Metamath Proof Explorer


Theorem expnlbnd

Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008)

Ref Expression
Assertion expnlbnd A+B1<Bk1Bk<A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpne0 A+A0
3 1 2 rereccld A+1A
4 expnbnd 1AB1<Bk1A<Bk
5 3 4 syl3an1 A+B1<Bk1A<Bk
6 rpregt0 A+A0<A
7 6 3ad2ant1 A+B1<BA0<A
8 nnnn0 kk0
9 reexpcl Bk0Bk
10 8 9 sylan2 BkBk
11 10 adantlr B1<BkBk
12 simpll B1<BkB
13 nnz kk
14 13 adantl B1<Bkk
15 0lt1 0<1
16 0re 0
17 1re 1
18 lttr 01B0<11<B0<B
19 16 17 18 mp3an12 B0<11<B0<B
20 15 19 mpani B1<B0<B
21 20 imp B1<B0<B
22 21 adantr B1<Bk0<B
23 expgt0 Bk0<B0<Bk
24 12 14 22 23 syl3anc B1<Bk0<Bk
25 11 24 jca B1<BkBk0<Bk
26 25 3adantl1 A+B1<BkBk0<Bk
27 ltrec1 A0<ABk0<Bk1A<Bk1Bk<A
28 7 26 27 syl2an2r A+B1<Bk1A<Bk1Bk<A
29 28 rexbidva A+B1<Bk1A<Bkk1Bk<A
30 5 29 mpbid A+B1<Bk1Bk<A