Metamath Proof Explorer


Theorem expp1

Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of Gleason p. 134. When A is nonzero, this holds for all integers N , see expneg . (Contributed by NM, 20-May-2005) (Revised by Mario Carneiro, 2-Jul-2013)

Ref Expression
Assertion expp1 AN0AN+1=ANA

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 seqp1 N1seq1××AN+1=seq1××AN×AN+1
3 nnuz =1
4 2 3 eleq2s Nseq1××AN+1=seq1××AN×AN+1
5 4 adantl ANseq1××AN+1=seq1××AN×AN+1
6 peano2nn NN+1
7 fvconst2g AN+1×AN+1=A
8 6 7 sylan2 AN×AN+1=A
9 8 oveq2d ANseq1××AN×AN+1=seq1××ANA
10 5 9 eqtrd ANseq1××AN+1=seq1××ANA
11 expnnval AN+1AN+1=seq1××AN+1
12 6 11 sylan2 ANAN+1=seq1××AN+1
13 expnnval ANAN=seq1××AN
14 13 oveq1d ANANA=seq1××ANA
15 10 12 14 3eqtr4d ANAN+1=ANA
16 exp1 AA1=A
17 mullid A1A=A
18 16 17 eqtr4d AA1=1A
19 18 adantr AN=0A1=1A
20 simpr AN=0N=0
21 20 oveq1d AN=0N+1=0+1
22 0p1e1 0+1=1
23 21 22 eqtrdi AN=0N+1=1
24 23 oveq2d AN=0AN+1=A1
25 oveq2 N=0AN=A0
26 exp0 AA0=1
27 25 26 sylan9eqr AN=0AN=1
28 27 oveq1d AN=0ANA=1A
29 19 24 28 3eqtr4d AN=0AN+1=ANA
30 15 29 jaodan ANN=0AN+1=ANA
31 1 30 sylan2b AN0AN+1=ANA