Metamath Proof Explorer


Theorem f1rhm0to0ALT

Description: Alternate proof for f1ghm0to0 . Using ghmf1 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses gim0to0ALT.a A=BaseR
gim0to0ALT.b B=BaseS
gim0to0ALT.n N=0S
gim0to0ALT.0 0˙=0R
Assertion f1rhm0to0ALT FRRingHomSF:A1-1BXAFX=NX=0˙

Proof

Step Hyp Ref Expression
1 gim0to0ALT.a A=BaseR
2 gim0to0ALT.b B=BaseS
3 gim0to0ALT.n N=0S
4 gim0to0ALT.0 0˙=0R
5 rhmghm FRRingHomSFRGrpHomS
6 5 adantr FRRingHomSXAFRGrpHomS
7 1 2 4 3 ghmf1 FRGrpHomSF:A1-1BxAFx=Nx=0˙
8 6 7 syl FRRingHomSXAF:A1-1BxAFx=Nx=0˙
9 fveq2 x=XFx=FX
10 9 eqeq1d x=XFx=NFX=N
11 eqeq1 x=Xx=0˙X=0˙
12 10 11 imbi12d x=XFx=Nx=0˙FX=NX=0˙
13 12 rspcv XAxAFx=Nx=0˙FX=NX=0˙
14 13 adantl FRRingHomSXAxAFx=Nx=0˙FX=NX=0˙
15 8 14 sylbid FRRingHomSXAF:A1-1BFX=NX=0˙
16 15 ex FRRingHomSXAF:A1-1BFX=NX=0˙
17 16 com23 FRRingHomSF:A1-1BXAFX=NX=0˙
18 17 3imp FRRingHomSF:A1-1BXAFX=NX=0˙
19 fveq2 X=0˙FX=F0˙
20 4 3 ghmid FRGrpHomSF0˙=N
21 5 20 syl FRRingHomSF0˙=N
22 21 3ad2ant1 FRRingHomSF:A1-1BXAF0˙=N
23 19 22 sylan9eqr FRRingHomSF:A1-1BXAX=0˙FX=N
24 23 ex FRRingHomSF:A1-1BXAX=0˙FX=N
25 18 24 impbid FRRingHomSF:A1-1BXAFX=NX=0˙