Description: Alternate proof for f1ghm0to0 . Using ghmf1 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gim0to0ALT.a | |
|
gim0to0ALT.b | |
||
gim0to0ALT.n | |
||
gim0to0ALT.0 | |
||
Assertion | f1rhm0to0ALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gim0to0ALT.a | |
|
2 | gim0to0ALT.b | |
|
3 | gim0to0ALT.n | |
|
4 | gim0to0ALT.0 | |
|
5 | rhmghm | |
|
6 | 5 | adantr | |
7 | 1 2 4 3 | ghmf1 | |
8 | 6 7 | syl | |
9 | fveq2 | |
|
10 | 9 | eqeq1d | |
11 | eqeq1 | |
|
12 | 10 11 | imbi12d | |
13 | 12 | rspcv | |
14 | 13 | adantl | |
15 | 8 14 | sylbid | |
16 | 15 | ex | |
17 | 16 | com23 | |
18 | 17 | 3imp | |
19 | fveq2 | |
|
20 | 4 3 | ghmid | |
21 | 5 20 | syl | |
22 | 21 | 3ad2ant1 | |
23 | 19 22 | sylan9eqr | |
24 | 23 | ex | |
25 | 18 24 | impbid | |