Metamath Proof Explorer


Theorem faclbnd5

Description: The factorial function grows faster than powers and exponentiations. If we consider K and M to be constants, the right-hand side of the inequality is a constant times N -factorial. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion faclbnd5 N0K0MNKMN<22K2MM+KN!

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 reexpcl NK0NK
3 1 2 sylan N0K0NK
4 3 ancoms K0N0NK
5 nnre MM
6 reexpcl MN0MN
7 5 6 sylan MN0MN
8 remulcl NKMNNKMN
9 4 7 8 syl2an K0N0MN0NKMN
10 9 anandirs K0MN0NKMN
11 2nn 2
12 nn0sqcl K0K20
13 nnexpcl 2K202K2
14 11 12 13 sylancr K02K2
15 nnnn0 MM0
16 nn0addcl M0K0M+K0
17 16 ancoms K0M0M+K0
18 15 17 sylan2 K0MM+K0
19 nnexpcl MM+K0MM+K
20 18 19 sylan2 MK0MMM+K
21 20 anabss7 K0MMM+K
22 nnmulcl 2K2MM+K2K2MM+K
23 14 21 22 syl2an2r K0M2K2MM+K
24 23 nnred K0M2K2MM+K
25 faccl N0N!
26 25 nnred N0N!
27 remulcl 2K2MM+KN!2K2MM+KN!
28 24 26 27 syl2an K0MN02K2MM+KN!
29 2re 2
30 remulcl 22K2MM+KN!22K2MM+KN!
31 29 28 30 sylancr K0MN022K2MM+KN!
32 faclbnd4 N0K0M0NKMN2K2MM+KN!
33 15 32 syl3an3 N0K0MNKMN2K2MM+KN!
34 33 3coml K0MN0NKMN2K2MM+KN!
35 34 3expa K0MN0NKMN2K2MM+KN!
36 1lt2 1<2
37 nnmulcl 2K2MM+KN!2K2MM+KN!
38 23 25 37 syl2an K0MN02K2MM+KN!
39 38 nngt0d K0MN00<2K2MM+KN!
40 ltmulgt12 2K2MM+KN!20<2K2MM+KN!1<22K2MM+KN!<22K2MM+KN!
41 29 40 mp3an2 2K2MM+KN!0<2K2MM+KN!1<22K2MM+KN!<22K2MM+KN!
42 28 39 41 syl2anc K0MN01<22K2MM+KN!<22K2MM+KN!
43 36 42 mpbii K0MN02K2MM+KN!<22K2MM+KN!
44 10 28 31 35 43 lelttrd K0MN0NKMN<22K2MM+KN!
45 2cn 2
46 23 nncnd K0M2K2MM+K
47 25 nncnd N0N!
48 mulass 22K2MM+KN!22K2MM+KN!=22K2MM+KN!
49 45 46 47 48 mp3an3an K0MN022K2MM+KN!=22K2MM+KN!
50 44 49 breqtrrd K0MN0NKMN<22K2MM+KN!
51 50 3impa K0MN0NKMN<22K2MM+KN!
52 51 3comr N0K0MNKMN<22K2MM+KN!