Metamath Proof Explorer


Theorem fcoconst

Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Assertion fcoconst FFnXYXFI×Y=I×FY

Proof

Step Hyp Ref Expression
1 simplr FFnXYXxIYX
2 fconstmpt I×Y=xIY
3 2 a1i FFnXYXI×Y=xIY
4 simpl FFnXYXFFnX
5 dffn2 FFnXF:XV
6 4 5 sylib FFnXYXF:XV
7 6 feqmptd FFnXYXF=yXFy
8 fveq2 y=YFy=FY
9 1 3 7 8 fmptco FFnXYXFI×Y=xIFY
10 fconstmpt I×FY=xIFY
11 9 10 eqtr4di FFnXYXFI×Y=I×FY