Metamath Proof Explorer


Theorem fcoinvbr

Description: Binary relation for the equivalence relation from fcoinver . (Contributed by Thierry Arnoux, 3-Jan-2020)

Ref Expression
Hypothesis fcoinvbr.e ˙ = F -1 F
Assertion fcoinvbr F Fn A X A Y A X ˙ Y F X = F Y

Proof

Step Hyp Ref Expression
1 fcoinvbr.e ˙ = F -1 F
2 1 breqi X ˙ Y X F -1 F Y
3 brcog X A Y A X F -1 F Y z X F z z F -1 Y
4 2 3 syl5bb X A Y A X ˙ Y z X F z z F -1 Y
5 4 3adant1 F Fn A X A Y A X ˙ Y z X F z z F -1 Y
6 fvex F X V
7 6 eqvinc F X = F Y z z = F X z = F Y
8 eqcom z = F X F X = z
9 eqcom z = F Y F Y = z
10 8 9 anbi12i z = F X z = F Y F X = z F Y = z
11 10 exbii z z = F X z = F Y z F X = z F Y = z
12 7 11 bitri F X = F Y z F X = z F Y = z
13 fnbrfvb F Fn A X A F X = z X F z
14 13 3adant3 F Fn A X A Y A F X = z X F z
15 fnbrfvb F Fn A Y A F Y = z Y F z
16 15 3adant2 F Fn A X A Y A F Y = z Y F z
17 14 16 anbi12d F Fn A X A Y A F X = z F Y = z X F z Y F z
18 vex z V
19 brcnvg z V Y A z F -1 Y Y F z
20 18 19 mpan Y A z F -1 Y Y F z
21 20 3ad2ant3 F Fn A X A Y A z F -1 Y Y F z
22 21 anbi2d F Fn A X A Y A X F z z F -1 Y X F z Y F z
23 17 22 bitr4d F Fn A X A Y A F X = z F Y = z X F z z F -1 Y
24 23 exbidv F Fn A X A Y A z F X = z F Y = z z X F z z F -1 Y
25 12 24 syl5bb F Fn A X A Y A F X = F Y z X F z z F -1 Y
26 5 25 bitr4d F Fn A X A Y A X ˙ Y F X = F Y