Metamath Proof Explorer


Theorem fcompt

Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcompt A:DEB:CDAB=xCABx

Proof

Step Hyp Ref Expression
1 ffvelcdm B:CDxCBxD
2 1 adantll A:DEB:CDxCBxD
3 ffn B:CDBFnC
4 3 adantl A:DEB:CDBFnC
5 dffn5 BFnCB=xCBx
6 4 5 sylib A:DEB:CDB=xCBx
7 ffn A:DEAFnD
8 7 adantr A:DEB:CDAFnD
9 dffn5 AFnDA=yDAy
10 8 9 sylib A:DEB:CDA=yDAy
11 fveq2 y=BxAy=ABx
12 2 6 10 11 fmptco A:DEB:CDAB=xCABx