Metamath Proof Explorer


Theorem fconst5

Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007)

Ref Expression
Assertion fconst5 FFnAAF=A×BranF=B

Proof

Step Hyp Ref Expression
1 rneq F=A×BranF=ranA×B
2 rnxp AranA×B=B
3 2 eqeq2d AranF=ranA×BranF=B
4 1 3 imbitrid AF=A×BranF=B
5 4 adantl FFnAAF=A×BranF=B
6 df-fo F:AontoBFFnAranF=B
7 fof F:AontoBF:AB
8 6 7 sylbir FFnAranF=BF:AB
9 fconst2g BVF:ABF=A×B
10 8 9 imbitrid BVFFnAranF=BF=A×B
11 10 expd BVFFnAranF=BF=A×B
12 11 adantrd BVFFnAAranF=BF=A×B
13 fnrel FFnARelF
14 snprc ¬BVB=
15 relrn0 RelFF=ranF=
16 15 biimprd RelFranF=F=
17 16 adantl B=RelFranF=F=
18 eqeq2 B=ranF=BranF=
19 18 adantr B=RelFranF=BranF=
20 xpeq2 B=A×B=A×
21 xp0 A×=
22 20 21 eqtrdi B=A×B=
23 22 eqeq2d B=F=A×BF=
24 23 adantr B=RelFF=A×BF=
25 17 19 24 3imtr4d B=RelFranF=BF=A×B
26 25 ex B=RelFranF=BF=A×B
27 14 26 sylbi ¬BVRelFranF=BF=A×B
28 13 27 syl5 ¬BVFFnAranF=BF=A×B
29 28 adantrd ¬BVFFnAAranF=BF=A×B
30 12 29 pm2.61i FFnAAranF=BF=A×B
31 5 30 impbid FFnAAF=A×BranF=B