| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fidomndrng.b |  | 
						
							| 2 |  | domnring |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | domnnzr |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 6 7 | nzrnz |  | 
						
							| 9 | 5 8 | syl |  | 
						
							| 10 | 9 | neneqd |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 7 6 | 0unit |  | 
						
							| 13 | 3 12 | syl |  | 
						
							| 14 | 10 13 | mtbird |  | 
						
							| 15 |  | disjsn |  | 
						
							| 16 | 14 15 | sylibr |  | 
						
							| 17 | 1 11 | unitss |  | 
						
							| 18 |  | reldisj |  | 
						
							| 19 | 17 18 | ax-mp |  | 
						
							| 20 | 16 19 | sylib |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | simplr |  | 
						
							| 24 |  | simpll |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 1 7 6 21 22 23 24 25 26 | fidomndrnglem |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 28 1 | opprbas |  | 
						
							| 30 | 28 7 | oppr0 |  | 
						
							| 31 | 28 6 | oppr1 |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 28 | opprdomn |  | 
						
							| 35 | 23 34 | syl |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 29 30 31 32 33 35 24 25 36 | fidomndrnglem |  | 
						
							| 38 | 11 6 21 28 32 | isunit |  | 
						
							| 39 | 27 37 38 | sylanbrc |  | 
						
							| 40 | 20 39 | eqelssd |  | 
						
							| 41 | 1 11 7 | isdrng |  | 
						
							| 42 | 3 40 41 | sylanbrc |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 |  | drngdomn |  | 
						
							| 45 | 43 44 | impbid1 |  |