Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fidomndrng.b | |
|
Assertion | fidomndrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidomndrng.b | |
|
2 | domnring | |
|
3 | 2 | adantl | |
4 | domnnzr | |
|
5 | 4 | adantl | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | nzrnz | |
9 | 5 8 | syl | |
10 | 9 | neneqd | |
11 | eqid | |
|
12 | 11 7 6 | 0unit | |
13 | 3 12 | syl | |
14 | 10 13 | mtbird | |
15 | disjsn | |
|
16 | 14 15 | sylibr | |
17 | 1 11 | unitss | |
18 | reldisj | |
|
19 | 17 18 | ax-mp | |
20 | 16 19 | sylib | |
21 | eqid | |
|
22 | eqid | |
|
23 | simplr | |
|
24 | simpll | |
|
25 | simpr | |
|
26 | eqid | |
|
27 | 1 7 6 21 22 23 24 25 26 | fidomndrnglem | |
28 | eqid | |
|
29 | 28 1 | opprbas | |
30 | 28 7 | oppr0 | |
31 | 28 6 | oppr1 | |
32 | eqid | |
|
33 | eqid | |
|
34 | 28 | opprdomn | |
35 | 23 34 | syl | |
36 | eqid | |
|
37 | 29 30 31 32 33 35 24 25 36 | fidomndrnglem | |
38 | 11 6 21 28 32 | isunit | |
39 | 27 37 38 | sylanbrc | |
40 | 20 39 | eqelssd | |
41 | 1 11 7 | isdrng | |
42 | 3 40 41 | sylanbrc | |
43 | 42 | ex | |
44 | drngdomn | |
|
45 | 43 44 | impbid1 | |