Metamath Proof Explorer


Theorem fidomndrng

Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b B=BaseR
Assertion fidomndrng BFinRDomnRDivRing

Proof

Step Hyp Ref Expression
1 fidomndrng.b B=BaseR
2 domnring RDomnRRing
3 2 adantl BFinRDomnRRing
4 domnnzr RDomnRNzRing
5 4 adantl BFinRDomnRNzRing
6 eqid 1R=1R
7 eqid 0R=0R
8 6 7 nzrnz RNzRing1R0R
9 5 8 syl BFinRDomn1R0R
10 9 neneqd BFinRDomn¬1R=0R
11 eqid UnitR=UnitR
12 11 7 6 0unit RRing0RUnitR1R=0R
13 3 12 syl BFinRDomn0RUnitR1R=0R
14 10 13 mtbird BFinRDomn¬0RUnitR
15 disjsn UnitR0R=¬0RUnitR
16 14 15 sylibr BFinRDomnUnitR0R=
17 1 11 unitss UnitRB
18 reldisj UnitRBUnitR0R=UnitRB0R
19 17 18 ax-mp UnitR0R=UnitRB0R
20 16 19 sylib BFinRDomnUnitRB0R
21 eqid rR=rR
22 eqid R=R
23 simplr BFinRDomnxB0RRDomn
24 simpll BFinRDomnxB0RBFin
25 simpr BFinRDomnxB0RxB0R
26 eqid yByRx=yByRx
27 1 7 6 21 22 23 24 25 26 fidomndrnglem BFinRDomnxB0RxrR1R
28 eqid opprR=opprR
29 28 1 opprbas B=BaseopprR
30 28 7 oppr0 0R=0opprR
31 28 6 oppr1 1R=1opprR
32 eqid ropprR=ropprR
33 eqid opprR=opprR
34 28 opprdomn RDomnopprRDomn
35 23 34 syl BFinRDomnxB0RopprRDomn
36 eqid yByopprRx=yByopprRx
37 29 30 31 32 33 35 24 25 36 fidomndrnglem BFinRDomnxB0RxropprR1R
38 11 6 21 28 32 isunit xUnitRxrR1RxropprR1R
39 27 37 38 sylanbrc BFinRDomnxB0RxUnitR
40 20 39 eqelssd BFinRDomnUnitR=B0R
41 1 11 7 isdrng RDivRingRRingUnitR=B0R
42 3 40 41 sylanbrc BFinRDomnRDivRing
43 42 ex BFinRDomnRDivRing
44 drngdomn RDivRingRDomn
45 43 44 impbid1 BFinRDomnRDivRing