Metamath Proof Explorer


Theorem fidomndrng

Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b B = Base R
Assertion fidomndrng B Fin R Domn R DivRing

Proof

Step Hyp Ref Expression
1 fidomndrng.b B = Base R
2 domnring R Domn R Ring
3 2 adantl B Fin R Domn R Ring
4 domnnzr R Domn R NzRing
5 4 adantl B Fin R Domn R NzRing
6 eqid 1 R = 1 R
7 eqid 0 R = 0 R
8 6 7 nzrnz R NzRing 1 R 0 R
9 5 8 syl B Fin R Domn 1 R 0 R
10 9 neneqd B Fin R Domn ¬ 1 R = 0 R
11 eqid Unit R = Unit R
12 11 7 6 0unit R Ring 0 R Unit R 1 R = 0 R
13 3 12 syl B Fin R Domn 0 R Unit R 1 R = 0 R
14 10 13 mtbird B Fin R Domn ¬ 0 R Unit R
15 disjsn Unit R 0 R = ¬ 0 R Unit R
16 14 15 sylibr B Fin R Domn Unit R 0 R =
17 1 11 unitss Unit R B
18 reldisj Unit R B Unit R 0 R = Unit R B 0 R
19 17 18 ax-mp Unit R 0 R = Unit R B 0 R
20 16 19 sylib B Fin R Domn Unit R B 0 R
21 eqid r R = r R
22 eqid R = R
23 simplr B Fin R Domn x B 0 R R Domn
24 simpll B Fin R Domn x B 0 R B Fin
25 simpr B Fin R Domn x B 0 R x B 0 R
26 eqid y B y R x = y B y R x
27 1 7 6 21 22 23 24 25 26 fidomndrnglem B Fin R Domn x B 0 R x r R 1 R
28 eqid opp r R = opp r R
29 28 1 opprbas B = Base opp r R
30 28 7 oppr0 0 R = 0 opp r R
31 28 6 oppr1 1 R = 1 opp r R
32 eqid r opp r R = r opp r R
33 eqid opp r R = opp r R
34 28 opprdomn R Domn opp r R Domn
35 23 34 syl B Fin R Domn x B 0 R opp r R Domn
36 eqid y B y opp r R x = y B y opp r R x
37 29 30 31 32 33 35 24 25 36 fidomndrnglem B Fin R Domn x B 0 R x r opp r R 1 R
38 11 6 21 28 32 isunit x Unit R x r R 1 R x r opp r R 1 R
39 27 37 38 sylanbrc B Fin R Domn x B 0 R x Unit R
40 20 39 eqelssd B Fin R Domn Unit R = B 0 R
41 1 11 7 isdrng R DivRing R Ring Unit R = B 0 R
42 3 40 41 sylanbrc B Fin R Domn R DivRing
43 42 ex B Fin R Domn R DivRing
44 drngdomn R DivRing R Domn
45 43 44 impbid1 B Fin R Domn R DivRing