Metamath Proof Explorer


Theorem fin23lem40

Description: Lemma for fin23 . Fin2 sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014)

Ref Expression
Hypothesis fin23lem40.f F=g|a𝒫gωxωasucxaxranarana
Assertion fin23lem40 AFinIIAF

Proof

Step Hyp Ref Expression
1 fin23lem40.f F=g|a𝒫gωxωasucxaxranarana
2 elmapi f𝒫Aωf:ω𝒫A
3 simpl AFinIIf:ω𝒫AbωfsucbfbAFinII
4 frn f:ω𝒫Aranf𝒫A
5 4 ad2antrl AFinIIf:ω𝒫Abωfsucbfbranf𝒫A
6 fdm f:ω𝒫Adomf=ω
7 peano1 ω
8 ne0i ωω
9 7 8 mp1i f:ω𝒫Aω
10 6 9 eqnetrd f:ω𝒫Adomf
11 dm0rn0 domf=ranf=
12 11 necon3bii domfranf
13 10 12 sylib f:ω𝒫Aranf
14 13 ad2antrl AFinIIf:ω𝒫Abωfsucbfbranf
15 ffn f:ω𝒫AfFnω
16 15 ad2antrl AFinIIf:ω𝒫AbωfsucbfbfFnω
17 sspss fsucbfbfsucbfbfsucb=fb
18 fvex fbV
19 fvex fsucbV
20 18 19 brcnv fb[⊂]-1fsucbfsucb[⊂]fb
21 18 brrpss fsucb[⊂]fbfsucbfb
22 20 21 bitri fb[⊂]-1fsucbfsucbfb
23 eqcom fb=fsucbfsucb=fb
24 22 23 orbi12i fb[⊂]-1fsucbfb=fsucbfsucbfbfsucb=fb
25 17 24 sylbb2 fsucbfbfb[⊂]-1fsucbfb=fsucb
26 25 ralimi bωfsucbfbbωfb[⊂]-1fsucbfb=fsucb
27 26 ad2antll AFinIIf:ω𝒫Abωfsucbfbbωfb[⊂]-1fsucbfb=fsucb
28 porpss [⊂]Poranf
29 cnvpo [⊂]Poranf[⊂]-1Poranf
30 28 29 mpbi [⊂]-1Poranf
31 30 a1i AFinIIf:ω𝒫Abωfsucbfb[⊂]-1Poranf
32 sornom fFnωbωfb[⊂]-1fsucbfb=fsucb[⊂]-1Poranf[⊂]-1Orranf
33 16 27 31 32 syl3anc AFinIIf:ω𝒫Abωfsucbfb[⊂]-1Orranf
34 cnvso [⊂]Orranf[⊂]-1Orranf
35 33 34 sylibr AFinIIf:ω𝒫Abωfsucbfb[⊂]Orranf
36 fin2i2 AFinIIranf𝒫Aranf[⊂]Orranfranfranf
37 3 5 14 35 36 syl22anc AFinIIf:ω𝒫Abωfsucbfbranfranf
38 37 expr AFinIIf:ω𝒫Abωfsucbfbranfranf
39 2 38 sylan2 AFinIIf𝒫Aωbωfsucbfbranfranf
40 39 ralrimiva AFinIIf𝒫Aωbωfsucbfbranfranf
41 1 isfin3ds AFinIIAFf𝒫Aωbωfsucbfbranfranf
42 40 41 mpbird AFinIIAF