Metamath Proof Explorer


Theorem fin23lem40

Description: Lemma for fin23 . Fin2 sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014)

Ref Expression
Hypothesis fin23lem40.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
Assertion fin23lem40 A FinII A F

Proof

Step Hyp Ref Expression
1 fin23lem40.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 elmapi f 𝒫 A ω f : ω 𝒫 A
3 simpl A FinII f : ω 𝒫 A b ω f suc b f b A FinII
4 frn f : ω 𝒫 A ran f 𝒫 A
5 4 ad2antrl A FinII f : ω 𝒫 A b ω f suc b f b ran f 𝒫 A
6 fdm f : ω 𝒫 A dom f = ω
7 peano1 ω
8 ne0i ω ω
9 7 8 mp1i f : ω 𝒫 A ω
10 6 9 eqnetrd f : ω 𝒫 A dom f
11 dm0rn0 dom f = ran f =
12 11 necon3bii dom f ran f
13 10 12 sylib f : ω 𝒫 A ran f
14 13 ad2antrl A FinII f : ω 𝒫 A b ω f suc b f b ran f
15 ffn f : ω 𝒫 A f Fn ω
16 15 ad2antrl A FinII f : ω 𝒫 A b ω f suc b f b f Fn ω
17 sspss f suc b f b f suc b f b f suc b = f b
18 fvex f b V
19 fvex f suc b V
20 18 19 brcnv f b [⊂] -1 f suc b f suc b [⊂] f b
21 18 brrpss f suc b [⊂] f b f suc b f b
22 20 21 bitri f b [⊂] -1 f suc b f suc b f b
23 eqcom f b = f suc b f suc b = f b
24 22 23 orbi12i f b [⊂] -1 f suc b f b = f suc b f suc b f b f suc b = f b
25 17 24 sylbb2 f suc b f b f b [⊂] -1 f suc b f b = f suc b
26 25 ralimi b ω f suc b f b b ω f b [⊂] -1 f suc b f b = f suc b
27 26 ad2antll A FinII f : ω 𝒫 A b ω f suc b f b b ω f b [⊂] -1 f suc b f b = f suc b
28 porpss [⊂] Po ran f
29 cnvpo [⊂] Po ran f [⊂] -1 Po ran f
30 28 29 mpbi [⊂] -1 Po ran f
31 30 a1i A FinII f : ω 𝒫 A b ω f suc b f b [⊂] -1 Po ran f
32 sornom f Fn ω b ω f b [⊂] -1 f suc b f b = f suc b [⊂] -1 Po ran f [⊂] -1 Or ran f
33 16 27 31 32 syl3anc A FinII f : ω 𝒫 A b ω f suc b f b [⊂] -1 Or ran f
34 cnvso [⊂] Or ran f [⊂] -1 Or ran f
35 33 34 sylibr A FinII f : ω 𝒫 A b ω f suc b f b [⊂] Or ran f
36 fin2i2 A FinII ran f 𝒫 A ran f [⊂] Or ran f ran f ran f
37 3 5 14 35 36 syl22anc A FinII f : ω 𝒫 A b ω f suc b f b ran f ran f
38 37 expr A FinII f : ω 𝒫 A b ω f suc b f b ran f ran f
39 2 38 sylan2 A FinII f 𝒫 A ω b ω f suc b f b ran f ran f
40 39 ralrimiva A FinII f 𝒫 A ω b ω f suc b f b ran f ran f
41 1 isfin3ds A FinII A F f 𝒫 A ω b ω f suc b f b ran f ran f
42 40 41 mpbird A FinII A F