Metamath Proof Explorer


Theorem fldgenval

Description: Value of the field generating function: ( F fldGen S ) is the smallest sub-division-ring of F containing S . (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1 B=BaseF
fldgenval.2 φFDivRing
fldgenval.3 φSB
Assertion fldgenval Could not format assertion : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-

Proof

Step Hyp Ref Expression
1 fldgenval.1 B=BaseF
2 fldgenval.2 φFDivRing
3 fldgenval.3 φSB
4 2 elexd φFV
5 1 fvexi BV
6 5 a1i φBV
7 6 3 ssexd φSV
8 1 sdrgid FDivRingBSubDRingF
9 2 8 syl φBSubDRingF
10 sseq2 a=BSaSB
11 10 adantl φa=BSaSB
12 9 11 3 rspcedvd φaSubDRingFSa
13 intexrab aSubDRingFSaaSubDRingF|SaV
14 12 13 sylib φaSubDRingF|SaV
15 simpl f=Fs=Sf=F
16 15 fveq2d f=Fs=SSubDRingf=SubDRingF
17 simpr f=Fs=Ss=S
18 17 sseq1d f=Fs=SsaSa
19 16 18 rabeqbidv f=Fs=SaSubDRingf|sa=aSubDRingF|Sa
20 19 inteqd f=Fs=SaSubDRingf|sa=aSubDRingF|Sa
21 df-fldgen Could not format fldGen = ( f e. _V , s e. _V |-> |^| { a e. ( SubDRing ` f ) | s C_ a } ) : No typesetting found for |- fldGen = ( f e. _V , s e. _V |-> |^| { a e. ( SubDRing ` f ) | s C_ a } ) with typecode |-
22 20 21 ovmpoga Could not format ( ( F e. _V /\ S e. _V /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ( F e. _V /\ S e. _V /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. _V ) -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-
23 4 7 14 22 syl3anc Could not format ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) : No typesetting found for |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) with typecode |-