| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  | 
						
							| 2 |  | flfval |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 | 1 3 | eleqtrd |  | 
						
							| 5 |  | simprr |  | 
						
							| 6 |  | cnpflfi |  | 
						
							| 7 | 4 5 6 | syl2anc |  | 
						
							| 8 |  | cnptop2 |  | 
						
							| 9 | 8 | ad2antll |  | 
						
							| 10 |  | toptopon2 |  | 
						
							| 11 | 9 10 | sylib |  | 
						
							| 12 |  | toponmax |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 |  | simpl1 |  | 
						
							| 15 |  | toponmax |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | simpl2 |  | 
						
							| 18 |  | filfbas |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | cnpf2 |  | 
						
							| 21 | 14 11 5 20 | syl3anc |  | 
						
							| 22 |  | simpl3 |  | 
						
							| 23 |  | fmco |  | 
						
							| 24 | 13 16 19 21 22 23 | syl32anc |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 |  | fco |  | 
						
							| 27 | 21 22 26 | syl2anc |  | 
						
							| 28 |  | flfval |  | 
						
							| 29 | 11 17 27 28 | syl3anc |  | 
						
							| 30 |  | fmfil |  | 
						
							| 31 | 16 19 22 30 | syl3anc |  | 
						
							| 32 |  | flfval |  | 
						
							| 33 | 11 31 21 32 | syl3anc |  | 
						
							| 34 | 25 29 33 | 3eqtr4d |  | 
						
							| 35 | 7 34 | eleqtrrd |  |