Metamath Proof Explorer


Theorem lmflf

Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses lmflf.1 Z=M
lmflf.2 L=ZfilGenZ
Assertion lmflf JTopOnXMF:ZXFtJPPJfLimfLF

Proof

Step Hyp Ref Expression
1 lmflf.1 Z=M
2 lmflf.2 L=ZfilGenZ
3 uzf :𝒫
4 ffn :𝒫Fn
5 3 4 ax-mp Fn
6 uzssz M
7 1 6 eqsstri Z
8 imaeq2 y=jFy=Fj
9 8 sseq1d y=jFyxFjx
10 9 rexima FnZyZFyxjZFjx
11 5 7 10 mp2an yZFyxjZFjx
12 simpl3 JTopOnXMF:ZXjZF:ZX
13 12 ffund JTopOnXMF:ZXjZFunF
14 uzss jMjM
15 14 1 eleq2s jZjM
16 15 adantl JTopOnXMF:ZXjZjM
17 12 fdmd JTopOnXMF:ZXjZdomF=Z
18 17 1 eqtrdi JTopOnXMF:ZXjZdomF=M
19 16 18 sseqtrrd JTopOnXMF:ZXjZjdomF
20 funimass4 FunFjdomFFjxkjFkx
21 13 19 20 syl2anc JTopOnXMF:ZXjZFjxkjFkx
22 21 rexbidva JTopOnXMF:ZXjZFjxjZkjFkx
23 11 22 bitr2id JTopOnXMF:ZXjZkjFkxyZFyx
24 23 imbi2d JTopOnXMF:ZXPxjZkjFkxPxyZFyx
25 24 ralbidv JTopOnXMF:ZXxJPxjZkjFkxxJPxyZFyx
26 25 anbi2d JTopOnXMF:ZXPXxJPxjZkjFkxPXxJPxyZFyx
27 simp1 JTopOnXMF:ZXJTopOnX
28 simp2 JTopOnXMF:ZXM
29 simp3 JTopOnXMF:ZXF:ZX
30 eqidd JTopOnXMF:ZXkZFk=Fk
31 27 1 28 29 30 lmbrf JTopOnXMF:ZXFtJPPXxJPxjZkjFkx
32 1 uzfbas MZfBasZ
33 2 flffbas JTopOnXZfBasZF:ZXPJfLimfLFPXxJPxyZFyx
34 32 33 syl3an2 JTopOnXMF:ZXPJfLimfLFPXxJPxyZFyx
35 26 31 34 3bitr4d JTopOnXMF:ZXFtJPPJfLimfLF