Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmflf.1 | |
|
lmflf.2 | |
||
Assertion | lmflf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmflf.1 | |
|
2 | lmflf.2 | |
|
3 | uzf | |
|
4 | ffn | |
|
5 | 3 4 | ax-mp | |
6 | uzssz | |
|
7 | 1 6 | eqsstri | |
8 | imaeq2 | |
|
9 | 8 | sseq1d | |
10 | 9 | rexima | |
11 | 5 7 10 | mp2an | |
12 | simpl3 | |
|
13 | 12 | ffund | |
14 | uzss | |
|
15 | 14 1 | eleq2s | |
16 | 15 | adantl | |
17 | 12 | fdmd | |
18 | 17 1 | eqtrdi | |
19 | 16 18 | sseqtrrd | |
20 | funimass4 | |
|
21 | 13 19 20 | syl2anc | |
22 | 21 | rexbidva | |
23 | 11 22 | bitr2id | |
24 | 23 | imbi2d | |
25 | 24 | ralbidv | |
26 | 25 | anbi2d | |
27 | simp1 | |
|
28 | simp2 | |
|
29 | simp3 | |
|
30 | eqidd | |
|
31 | 27 1 28 29 30 | lmbrf | |
32 | 1 | uzfbas | |
33 | 2 | flffbas | |
34 | 32 33 | syl3an2 | |
35 | 26 31 34 | 3bitr4d | |