Metamath Proof Explorer


Theorem txflf

Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses txflf.j φ J TopOn X
txflf.k φ K TopOn Y
txflf.l φ L Fil Z
txflf.f φ F : Z X
txflf.g φ G : Z Y
txflf.h H = n Z F n G n
Assertion txflf φ R S J × t K fLimf L H R J fLimf L F S K fLimf L G

Proof

Step Hyp Ref Expression
1 txflf.j φ J TopOn X
2 txflf.k φ K TopOn Y
3 txflf.l φ L Fil Z
4 txflf.f φ F : Z X
5 txflf.g φ G : Z Y
6 txflf.h H = n Z F n G n
7 vex u V
8 vex v V
9 7 8 xpex u × v V
10 9 rgen2w u J v K u × v V
11 eqid u J , v K u × v = u J , v K u × v
12 eleq2 z = u × v R S z R S u × v
13 sseq2 z = u × v H h z H h u × v
14 13 rexbidv z = u × v h L H h z h L H h u × v
15 12 14 imbi12d z = u × v R S z h L H h z R S u × v h L H h u × v
16 11 15 ralrnmpo u J v K u × v V z ran u J , v K u × v R S z h L H h z u J v K R S u × v h L H h u × v
17 10 16 ax-mp z ran u J , v K u × v R S z h L H h z u J v K R S u × v h L H h u × v
18 opelxp R S u × v R u S v
19 18 biancomi R S u × v S v R u
20 19 a1i φ R S u × v S v R u
21 r19.40 h L n h F n u n h G n v h L n h F n u h L n h G n v
22 raleq h = f n h F n u n f F n u
23 22 cbvrexvw h L n h F n u f L n f F n u
24 raleq h = g n h G n v n g G n v
25 24 cbvrexvw h L n h G n v g L n g G n v
26 23 25 anbi12i h L n h F n u h L n h G n v f L n f F n u g L n g G n v
27 21 26 sylib h L n h F n u n h G n v f L n f F n u g L n g G n v
28 reeanv f L g L n f F n u n g G n v f L n f F n u g L n g G n v
29 filin L Fil Z f L g L f g L
30 29 3expb L Fil Z f L g L f g L
31 3 30 sylan φ f L g L f g L
32 inss1 f g f
33 ssralv f g f n f F n u n f g F n u
34 32 33 ax-mp n f F n u n f g F n u
35 inss2 f g g
36 ssralv f g g n g G n v n f g G n v
37 35 36 ax-mp n g G n v n f g G n v
38 34 37 anim12i n f F n u n g G n v n f g F n u n f g G n v
39 raleq h = f g n h F n u n f g F n u
40 raleq h = f g n h G n v n f g G n v
41 39 40 anbi12d h = f g n h F n u n h G n v n f g F n u n f g G n v
42 41 rspcev f g L n f g F n u n f g G n v h L n h F n u n h G n v
43 31 38 42 syl2an φ f L g L n f F n u n g G n v h L n h F n u n h G n v
44 43 ex φ f L g L n f F n u n g G n v h L n h F n u n h G n v
45 44 rexlimdvva φ f L g L n f F n u n g G n v h L n h F n u n h G n v
46 28 45 syl5bir φ f L n f F n u g L n g G n v h L n h F n u n h G n v
47 27 46 impbid2 φ h L n h F n u n h G n v f L n f F n u g L n g G n v
48 df-ima H h = ran H h
49 filelss L Fil Z h L h Z
50 3 49 sylan φ h L h Z
51 6 reseq1i H h = n Z F n G n h
52 resmpt h Z n Z F n G n h = n h F n G n
53 51 52 eqtrid h Z H h = n h F n G n
54 50 53 syl φ h L H h = n h F n G n
55 54 rneqd φ h L ran H h = ran n h F n G n
56 48 55 eqtrid φ h L H h = ran n h F n G n
57 56 sseq1d φ h L H h u × v ran n h F n G n u × v
58 opelxp F n G n u × v F n u G n v
59 58 ralbii n h F n G n u × v n h F n u G n v
60 eqid n h F n G n = n h F n G n
61 60 fmpt n h F n G n u × v n h F n G n : h u × v
62 opex F n G n V
63 62 60 fnmpti n h F n G n Fn h
64 df-f n h F n G n : h u × v n h F n G n Fn h ran n h F n G n u × v
65 63 64 mpbiran n h F n G n : h u × v ran n h F n G n u × v
66 61 65 bitri n h F n G n u × v ran n h F n G n u × v
67 r19.26 n h F n u G n v n h F n u n h G n v
68 59 66 67 3bitr3i ran n h F n G n u × v n h F n u n h G n v
69 57 68 bitrdi φ h L H h u × v n h F n u n h G n v
70 69 rexbidva φ h L H h u × v h L n h F n u n h G n v
71 4 adantr φ f L F : Z X
72 71 ffund φ f L Fun F
73 filelss L Fil Z f L f Z
74 3 73 sylan φ f L f Z
75 71 fdmd φ f L dom F = Z
76 74 75 sseqtrrd φ f L f dom F
77 funimass4 Fun F f dom F F f u n f F n u
78 72 76 77 syl2anc φ f L F f u n f F n u
79 78 rexbidva φ f L F f u f L n f F n u
80 5 adantr φ g L G : Z Y
81 80 ffund φ g L Fun G
82 filelss L Fil Z g L g Z
83 3 82 sylan φ g L g Z
84 80 fdmd φ g L dom G = Z
85 83 84 sseqtrrd φ g L g dom G
86 funimass4 Fun G g dom G G g v n g G n v
87 81 85 86 syl2anc φ g L G g v n g G n v
88 87 rexbidva φ g L G g v g L n g G n v
89 79 88 anbi12d φ f L F f u g L G g v f L n f F n u g L n g G n v
90 47 70 89 3bitr4d φ h L H h u × v f L F f u g L G g v
91 20 90 imbi12d φ R S u × v h L H h u × v S v R u f L F f u g L G g v
92 impexp S v R u f L F f u g L G g v S v R u f L F f u g L G g v
93 91 92 bitrdi φ R S u × v h L H h u × v S v R u f L F f u g L G g v
94 93 ralbidv φ v K R S u × v h L H h u × v v K S v R u f L F f u g L G g v
95 eleq2 x = v S x S v
96 95 ralrab v x K | S x R u f L F f u g L G g v v K S v R u f L F f u g L G g v
97 r19.21v v x K | S x R u f L F f u g L G g v R u v x K | S x f L F f u g L G g v
98 96 97 bitr3i v K S v R u f L F f u g L G g v R u v x K | S x f L F f u g L G g v
99 94 98 bitrdi φ v K R S u × v h L H h u × v R u v x K | S x f L F f u g L G g v
100 99 ralbidv φ u J v K R S u × v h L H h u × v u J R u v x K | S x f L F f u g L G g v
101 eleq2 x = u R x R u
102 101 ralrab u x J | R x v x K | S x f L F f u g L G g v u J R u v x K | S x f L F f u g L G g v
103 100 102 bitr4di φ u J v K R S u × v h L H h u × v u x J | R x v x K | S x f L F f u g L G g v
104 103 adantr φ R X S Y u J v K R S u × v h L H h u × v u x J | R x v x K | S x f L F f u g L G g v
105 toponmax J TopOn X X J
106 1 105 syl φ X J
107 eleq2 x = X R x R X
108 107 rspcev X J R X x J R x
109 rabn0 x J | R x x J R x
110 108 109 sylibr X J R X x J | R x
111 106 110 sylan φ R X x J | R x
112 toponmax K TopOn Y Y K
113 2 112 syl φ Y K
114 eleq2 x = Y S x S Y
115 114 rspcev Y K S Y x K S x
116 rabn0 x K | S x x K S x
117 115 116 sylibr Y K S Y x K | S x
118 113 117 sylan φ S Y x K | S x
119 111 118 anim12dan φ R X S Y x J | R x x K | S x
120 r19.28zv x K | S x v x K | S x f L F f u g L G g v f L F f u v x K | S x g L G g v
121 120 ralbidv x K | S x u x J | R x v x K | S x f L F f u g L G g v u x J | R x f L F f u v x K | S x g L G g v
122 r19.27zv x J | R x u x J | R x f L F f u v x K | S x g L G g v u x J | R x f L F f u v x K | S x g L G g v
123 121 122 sylan9bbr x J | R x x K | S x u x J | R x v x K | S x f L F f u g L G g v u x J | R x f L F f u v x K | S x g L G g v
124 119 123 syl φ R X S Y u x J | R x v x K | S x f L F f u g L G g v u x J | R x f L F f u v x K | S x g L G g v
125 104 124 bitrd φ R X S Y u J v K R S u × v h L H h u × v u x J | R x f L F f u v x K | S x g L G g v
126 101 ralrab u x J | R x f L F f u u J R u f L F f u
127 95 ralrab v x K | S x g L G g v v K S v g L G g v
128 126 127 anbi12i u x J | R x f L F f u v x K | S x g L G g v u J R u f L F f u v K S v g L G g v
129 125 128 bitrdi φ R X S Y u J v K R S u × v h L H h u × v u J R u f L F f u v K S v g L G g v
130 17 129 syl5bb φ R X S Y z ran u J , v K u × v R S z h L H h z u J R u f L F f u v K S v g L G g v
131 130 pm5.32da φ R X S Y z ran u J , v K u × v R S z h L H h z R X S Y u J R u f L F f u v K S v g L G g v
132 opelxp R S X × Y R X S Y
133 132 anbi1i R S X × Y z ran u J , v K u × v R S z h L H h z R X S Y z ran u J , v K u × v R S z h L H h z
134 an4 R X u J R u f L F f u S Y v K S v g L G g v R X S Y u J R u f L F f u v K S v g L G g v
135 131 133 134 3bitr4g φ R S X × Y z ran u J , v K u × v R S z h L H h z R X u J R u f L F f u S Y v K S v g L G g v
136 eqid ran u J , v K u × v = ran u J , v K u × v
137 136 txval J TopOn X K TopOn Y J × t K = topGen ran u J , v K u × v
138 1 2 137 syl2anc φ J × t K = topGen ran u J , v K u × v
139 138 oveq1d φ J × t K fLimf L = topGen ran u J , v K u × v fLimf L
140 139 fveq1d φ J × t K fLimf L H = topGen ran u J , v K u × v fLimf L H
141 140 eleq2d φ R S J × t K fLimf L H R S topGen ran u J , v K u × v fLimf L H
142 txtopon J TopOn X K TopOn Y J × t K TopOn X × Y
143 1 2 142 syl2anc φ J × t K TopOn X × Y
144 138 143 eqeltrrd φ topGen ran u J , v K u × v TopOn X × Y
145 4 ffvelrnda φ n Z F n X
146 5 ffvelrnda φ n Z G n Y
147 145 146 opelxpd φ n Z F n G n X × Y
148 147 6 fmptd φ H : Z X × Y
149 eqid topGen ran u J , v K u × v = topGen ran u J , v K u × v
150 149 flftg topGen ran u J , v K u × v TopOn X × Y L Fil Z H : Z X × Y R S topGen ran u J , v K u × v fLimf L H R S X × Y z ran u J , v K u × v R S z h L H h z
151 144 3 148 150 syl3anc φ R S topGen ran u J , v K u × v fLimf L H R S X × Y z ran u J , v K u × v R S z h L H h z
152 141 151 bitrd φ R S J × t K fLimf L H R S X × Y z ran u J , v K u × v R S z h L H h z
153 isflf J TopOn X L Fil Z F : Z X R J fLimf L F R X u J R u f L F f u
154 1 3 4 153 syl3anc φ R J fLimf L F R X u J R u f L F f u
155 isflf K TopOn Y L Fil Z G : Z Y S K fLimf L G S Y v K S v g L G g v
156 2 3 5 155 syl3anc φ S K fLimf L G S Y v K S v g L G g v
157 154 156 anbi12d φ R J fLimf L F S K fLimf L G R X u J R u f L F f u S Y v K S v g L G g v
158 135 152 157 3bitr4d φ R S J × t K fLimf L H R J fLimf L F S K fLimf L G