Metamath Proof Explorer


Theorem flfcnp

Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Assertion flfcnp JTopOnXLFilYF:YXAJfLimfLFGJCnPKAGAKfLimfLGF

Proof

Step Hyp Ref Expression
1 simprl JTopOnXLFilYF:YXAJfLimfLFGJCnPKAAJfLimfLF
2 flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
3 2 adantr JTopOnXLFilYF:YXAJfLimfLFGJCnPKAJfLimfLF=JfLimXFilMapFL
4 1 3 eleqtrd JTopOnXLFilYF:YXAJfLimfLFGJCnPKAAJfLimXFilMapFL
5 simprr JTopOnXLFilYF:YXAJfLimfLFGJCnPKAGJCnPKA
6 cnpflfi AJfLimXFilMapFLGJCnPKAGAKfLimfXFilMapFLG
7 4 5 6 syl2anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAGAKfLimfXFilMapFLG
8 cnptop2 GJCnPKAKTop
9 8 ad2antll JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKTop
10 toptopon2 KTopKTopOnK
11 9 10 sylib JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKTopOnK
12 toponmax KTopOnKKK
13 11 12 syl JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKK
14 simpl1 JTopOnXLFilYF:YXAJfLimfLFGJCnPKAJTopOnX
15 toponmax JTopOnXXJ
16 14 15 syl JTopOnXLFilYF:YXAJfLimfLFGJCnPKAXJ
17 simpl2 JTopOnXLFilYF:YXAJfLimfLFGJCnPKALFilY
18 filfbas LFilYLfBasY
19 17 18 syl JTopOnXLFilYF:YXAJfLimfLFGJCnPKALfBasY
20 cnpf2 JTopOnXKTopOnKGJCnPKAG:XK
21 14 11 5 20 syl3anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAG:XK
22 simpl3 JTopOnXLFilYF:YXAJfLimfLFGJCnPKAF:YX
23 fmco KKXJLfBasYG:XKF:YXKFilMapGFL=KFilMapGXFilMapFL
24 13 16 19 21 22 23 syl32anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKFilMapGFL=KFilMapGXFilMapFL
25 24 oveq2d JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKfLimKFilMapGFL=KfLimKFilMapGXFilMapFL
26 fco G:XKF:YXGF:YK
27 21 22 26 syl2anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAGF:YK
28 flfval KTopOnKLFilYGF:YKKfLimfLGF=KfLimKFilMapGFL
29 11 17 27 28 syl3anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKfLimfLGF=KfLimKFilMapGFL
30 fmfil XJLfBasYF:YXXFilMapFLFilX
31 16 19 22 30 syl3anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAXFilMapFLFilX
32 flfval KTopOnKXFilMapFLFilXG:XKKfLimfXFilMapFLG=KfLimKFilMapGXFilMapFL
33 11 31 21 32 syl3anc JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKfLimfXFilMapFLG=KfLimKFilMapGXFilMapFL
34 25 29 33 3eqtr4d JTopOnXLFilYF:YXAJfLimfLFGJCnPKAKfLimfLGF=KfLimfXFilMapFLG
35 7 34 eleqtrrd JTopOnXLFilYF:YXAJfLimfLFGJCnPKAGAKfLimfLGF