Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | flfcnp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl | |
|
2 | flfval | |
|
3 | 2 | adantr | |
4 | 1 3 | eleqtrd | |
5 | simprr | |
|
6 | cnpflfi | |
|
7 | 4 5 6 | syl2anc | |
8 | cnptop2 | |
|
9 | 8 | ad2antll | |
10 | toptopon2 | |
|
11 | 9 10 | sylib | |
12 | toponmax | |
|
13 | 11 12 | syl | |
14 | simpl1 | |
|
15 | toponmax | |
|
16 | 14 15 | syl | |
17 | simpl2 | |
|
18 | filfbas | |
|
19 | 17 18 | syl | |
20 | cnpf2 | |
|
21 | 14 11 5 20 | syl3anc | |
22 | simpl3 | |
|
23 | fmco | |
|
24 | 13 16 19 21 22 23 | syl32anc | |
25 | 24 | oveq2d | |
26 | fco | |
|
27 | 21 22 26 | syl2anc | |
28 | flfval | |
|
29 | 11 17 27 28 | syl3anc | |
30 | fmfil | |
|
31 | 16 19 22 30 | syl3anc | |
32 | flfval | |
|
33 | 11 31 21 32 | syl3anc | |
34 | 25 29 33 | 3eqtr4d | |
35 | 7 34 | eleqtrrd | |