| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flfcntr.c |  | 
						
							| 2 |  | flfcntr.b |  | 
						
							| 3 |  | flfcntr.j |  | 
						
							| 4 |  | flfcntr.a |  | 
						
							| 5 |  | flfcntr.1 |  | 
						
							| 6 |  | flfcntr.y |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 | eleq1d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 10 | fveq1d |  | 
						
							| 12 | 11 | eleq2d |  | 
						
							| 13 | 9 12 | raleqbidv |  | 
						
							| 14 | 1 | toptopon |  | 
						
							| 15 | 3 14 | sylib |  | 
						
							| 16 |  | resttopon |  | 
						
							| 17 | 15 4 16 | syl2anc |  | 
						
							| 18 |  | cntop2 |  | 
						
							| 19 | 5 18 | syl |  | 
						
							| 20 | 2 | toptopon |  | 
						
							| 21 | 19 20 | sylib |  | 
						
							| 22 |  | cnflf |  | 
						
							| 23 | 17 21 22 | syl2anc |  | 
						
							| 24 | 5 23 | mpbid |  | 
						
							| 25 | 24 | simprd |  | 
						
							| 26 | 1 | sscls |  | 
						
							| 27 | 3 4 26 | syl2anc |  | 
						
							| 28 | 27 6 | sseldd |  | 
						
							| 29 | 4 6 | sseldd |  | 
						
							| 30 |  | trnei |  | 
						
							| 31 | 15 4 29 30 | syl3anc |  | 
						
							| 32 | 28 31 | mpbid |  | 
						
							| 33 | 13 25 32 | rspcdva |  | 
						
							| 34 |  | neiflim |  | 
						
							| 35 | 17 6 34 | syl2anc |  | 
						
							| 36 | 6 | snssd |  | 
						
							| 37 | 1 | neitr |  | 
						
							| 38 | 3 4 36 37 | syl3anc |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 35 39 | eleqtrd |  | 
						
							| 41 | 8 33 40 | rspcdva |  |