Metamath Proof Explorer


Theorem flffval

Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009) (Revised by Mario Carneiro, 15-Dec-2013) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion flffval JTopOnXLFilYJfLimfL=fXYJfLimXFilMapfL

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 fvssunirn FilYranFil
3 2 sseli LFilYLranFil
4 unieq x=Jx=J
5 unieq y=Ly=L
6 4 5 oveqan12d x=Jy=Lxy=JL
7 simpl x=Jy=Lx=J
8 4 adantr x=Jy=Lx=J
9 8 oveq1d x=Jy=LxFilMapf=JFilMapf
10 simpr x=Jy=Ly=L
11 9 10 fveq12d x=Jy=LxFilMapfy=JFilMapfL
12 7 11 oveq12d x=Jy=LxfLimxFilMapfy=JfLimJFilMapfL
13 6 12 mpteq12dv x=Jy=LfxyxfLimxFilMapfy=fJLJfLimJFilMapfL
14 df-flf fLimf=xTop,yranFilfxyxfLimxFilMapfy
15 ovex JLV
16 15 mptex fJLJfLimJFilMapfLV
17 13 14 16 ovmpoa JTopLranFilJfLimfL=fJLJfLimJFilMapfL
18 1 3 17 syl2an JTopOnXLFilYJfLimfL=fJLJfLimJFilMapfL
19 toponuni JTopOnXX=J
20 19 eqcomd JTopOnXJ=X
21 filunibas LFilYL=Y
22 20 21 oveqan12d JTopOnXLFilYJL=XY
23 20 adantr JTopOnXLFilYJ=X
24 23 oveq1d JTopOnXLFilYJFilMapf=XFilMapf
25 24 fveq1d JTopOnXLFilYJFilMapfL=XFilMapfL
26 25 oveq2d JTopOnXLFilYJfLimJFilMapfL=JfLimXFilMapfL
27 22 26 mpteq12dv JTopOnXLFilYfJLJfLimJFilMapfL=fXYJfLimXFilMapfL
28 18 27 eqtrd JTopOnXLFilYJfLimfL=fXYJfLimXFilMapfL