Metamath Proof Explorer


Theorem fmpt

Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fmpt.1 F=xAC
Assertion fmpt xACBF:AB

Proof

Step Hyp Ref Expression
1 fmpt.1 F=xAC
2 1 fnmpt xACBFFnA
3 1 rnmpt ranF=y|xAy=C
4 r19.29 xACBxAy=CxACBy=C
5 eleq1 y=CyBCB
6 5 biimparc CBy=CyB
7 6 rexlimivw xACBy=CyB
8 4 7 syl xACBxAy=CyB
9 8 ex xACBxAy=CyB
10 9 abssdv xACBy|xAy=CB
11 3 10 eqsstrid xACBranFB
12 df-f F:ABFFnAranFB
13 2 11 12 sylanbrc xACBF:AB
14 fimacnv F:ABF-1B=A
15 1 mptpreima F-1B=xA|CB
16 14 15 eqtr3di F:ABA=xA|CB
17 rabid2 A=xA|CBxACB
18 16 17 sylib F:ABxACB
19 13 18 impbii xACBF:AB