Metamath Proof Explorer


Theorem fmtno4prmfac193

Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtno4prmfac193 P P FermatNo 4 P FermatNo 4 P = 193

Proof

Step Hyp Ref Expression
1 fmtno4prmfac P P FermatNo 4 P FermatNo 4 P = 65 P = 129 P = 193
2 5nn 5
3 1nn0 1 0
4 3nn 3
5 3 4 decnncl 13
6 1lt5 1 < 5
7 1nn 1
8 3nn0 3 0
9 1lt10 1 < 10
10 7 8 3 9 declti 1 < 13
11 eqid 5 13 = 5 13
12 2 5 6 10 11 nprmi ¬ 5 13
13 id P = 65 P = 65
14 5nn0 5 0
15 eqid 13 = 13
16 5cn 5
17 16 mulid1i 5 1 = 5
18 17 oveq1i 5 1 + 1 = 5 + 1
19 5p1e6 5 + 1 = 6
20 18 19 eqtri 5 1 + 1 = 6
21 5t3e15 5 3 = 15
22 14 3 8 15 14 3 20 21 decmul2c 5 13 = 65
23 13 22 eqtr4di P = 65 P = 5 13
24 23 eleq1d P = 65 P 5 13
25 12 24 mtbiri P = 65 ¬ P
26 25 pm2.21d P = 65 P P = 193
27 4nn0 4 0
28 27 4 decnncl 43
29 4nn 4
30 29 8 3 9 declti 1 < 43
31 1lt3 1 < 3
32 eqid 43 3 = 43 3
33 28 4 30 31 32 nprmi ¬ 43 3
34 id P = 129 P = 129
35 eqid 43 = 43
36 4t3e12 4 3 = 12
37 3t3e9 3 3 = 9
38 8 27 8 35 36 37 decmul1 43 3 = 129
39 34 38 eqtr4di P = 129 P = 43 3
40 39 eleq1d P = 129 P 43 3
41 33 40 mtbiri P = 129 ¬ P
42 41 pm2.21d P = 129 P P = 193
43 ax-1 P = 193 P P = 193
44 26 42 43 3jaoi P = 65 P = 129 P = 193 P P = 193
45 44 com12 P P = 65 P = 129 P = 193 P = 193
46 45 3ad2ant1 P P FermatNo 4 P FermatNo 4 P = 65 P = 129 P = 193 P = 193
47 1 46 mpd P P FermatNo 4 P FermatNo 4 P = 193