Metamath Proof Explorer


Theorem fnun

Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004)

Ref Expression
Assertion fnun FFnAGFnBAB=FGFnAB

Proof

Step Hyp Ref Expression
1 df-fn FFnAFunFdomF=A
2 df-fn GFnBFunGdomG=B
3 ineq12 domF=AdomG=BdomFdomG=AB
4 3 eqeq1d domF=AdomG=BdomFdomG=AB=
5 4 anbi2d domF=AdomG=BFunFFunGdomFdomG=FunFFunGAB=
6 funun FunFFunGdomFdomG=FunFG
7 5 6 syl6bir domF=AdomG=BFunFFunGAB=FunFG
8 dmun domFG=domFdomG
9 uneq12 domF=AdomG=BdomFdomG=AB
10 8 9 eqtrid domF=AdomG=BdomFG=AB
11 7 10 jctird domF=AdomG=BFunFFunGAB=FunFGdomFG=AB
12 df-fn FGFnABFunFGdomFG=AB
13 11 12 syl6ibr domF=AdomG=BFunFFunGAB=FGFnAB
14 13 expd domF=AdomG=BFunFFunGAB=FGFnAB
15 14 impcom FunFFunGdomF=AdomG=BAB=FGFnAB
16 15 an4s FunFdomF=AFunGdomG=BAB=FGFnAB
17 1 2 16 syl2anb FFnAGFnBAB=FGFnAB
18 17 imp FFnAGFnBAB=FGFnAB