Metamath Proof Explorer


Theorem fphpdo

Description: Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014)

Ref Expression
Hypotheses fphpdo.1 φ A
fphpdo.2 φ B V
fphpdo.3 φ B A
fphpdo.4 φ z A C B
fphpdo.5 z = x C = D
fphpdo.6 z = y C = E
Assertion fphpdo φ x A y A x < y D = E

Proof

Step Hyp Ref Expression
1 fphpdo.1 φ A
2 fphpdo.2 φ B V
3 fphpdo.3 φ B A
4 fphpdo.4 φ z A C B
5 fphpdo.5 z = x C = D
6 fphpdo.6 z = y C = E
7 4 fmpttd φ z A C : A B
8 7 ffvelrnda φ b A z A C b B
9 fveq2 b = c z A C b = z A C c
10 3 8 9 fphpd φ b A c A b c z A C b = z A C c
11 1 sselda φ b A b
12 11 adantrr φ b A c A b
13 12 adantr φ b A c A z A C b = z A C c b
14 1 sselda φ c A c
15 14 adantrl φ b A c A c
16 15 adantr φ b A c A z A C b = z A C c c
17 13 16 lttri2d φ b A c A z A C b = z A C c b c b < c c < b
18 simprl φ b A c A b A
19 18 ad2antrr φ b A c A z A C b = z A C c b < c b A
20 simprr φ b A c A c A
21 20 ad2antrr φ b A c A z A C b = z A C c b < c c A
22 simpr φ b A c A z A C b = z A C c b < c b < c
23 simplr φ b A c A z A C b = z A C c b < c z A C b = z A C c
24 breq1 x = b x < y b < y
25 fveqeq2 x = b z A C x = z A C y z A C b = z A C y
26 24 25 anbi12d x = b x < y z A C x = z A C y b < y z A C b = z A C y
27 breq2 y = c b < y b < c
28 fveq2 y = c z A C y = z A C c
29 28 eqeq2d y = c z A C b = z A C y z A C b = z A C c
30 27 29 anbi12d y = c b < y z A C b = z A C y b < c z A C b = z A C c
31 26 30 rspc2ev b A c A b < c z A C b = z A C c x A y A x < y z A C x = z A C y
32 19 21 22 23 31 syl112anc φ b A c A z A C b = z A C c b < c x A y A x < y z A C x = z A C y
33 32 ex φ b A c A z A C b = z A C c b < c x A y A x < y z A C x = z A C y
34 20 ad2antrr φ b A c A z A C b = z A C c c < b c A
35 18 ad2antrr φ b A c A z A C b = z A C c c < b b A
36 simpr φ b A c A z A C b = z A C c c < b c < b
37 simplr φ b A c A z A C b = z A C c c < b z A C b = z A C c
38 37 eqcomd φ b A c A z A C b = z A C c c < b z A C c = z A C b
39 breq1 x = c x < y c < y
40 fveqeq2 x = c z A C x = z A C y z A C c = z A C y
41 39 40 anbi12d x = c x < y z A C x = z A C y c < y z A C c = z A C y
42 breq2 y = b c < y c < b
43 fveq2 y = b z A C y = z A C b
44 43 eqeq2d y = b z A C c = z A C y z A C c = z A C b
45 42 44 anbi12d y = b c < y z A C c = z A C y c < b z A C c = z A C b
46 41 45 rspc2ev c A b A c < b z A C c = z A C b x A y A x < y z A C x = z A C y
47 34 35 36 38 46 syl112anc φ b A c A z A C b = z A C c c < b x A y A x < y z A C x = z A C y
48 47 ex φ b A c A z A C b = z A C c c < b x A y A x < y z A C x = z A C y
49 33 48 jaod φ b A c A z A C b = z A C c b < c c < b x A y A x < y z A C x = z A C y
50 eqid z A C = z A C
51 simplr φ x A y A x A
52 eleq1w z = x z A x A
53 52 anbi2d z = x φ z A φ x A
54 5 eleq1d z = x C B D B
55 53 54 imbi12d z = x φ z A C B φ x A D B
56 55 4 chvarvv φ x A D B
57 56 adantr φ x A y A D B
58 50 5 51 57 fvmptd3 φ x A y A z A C x = D
59 simpr φ x A y A y A
60 eleq1w z = y z A y A
61 60 anbi2d z = y φ z A φ y A
62 6 eleq1d z = y C B E B
63 61 62 imbi12d z = y φ z A C B φ y A E B
64 63 4 chvarvv φ y A E B
65 64 adantlr φ x A y A E B
66 50 6 59 65 fvmptd3 φ x A y A z A C y = E
67 58 66 eqeq12d φ x A y A z A C x = z A C y D = E
68 67 biimpd φ x A y A z A C x = z A C y D = E
69 68 anim2d φ x A y A x < y z A C x = z A C y x < y D = E
70 69 reximdva φ x A y A x < y z A C x = z A C y y A x < y D = E
71 70 reximdva φ x A y A x < y z A C x = z A C y x A y A x < y D = E
72 71 ad2antrr φ b A c A z A C b = z A C c x A y A x < y z A C x = z A C y x A y A x < y D = E
73 49 72 syld φ b A c A z A C b = z A C c b < c c < b x A y A x < y D = E
74 17 73 sylbid φ b A c A z A C b = z A C c b c x A y A x < y D = E
75 74 expimpd φ b A c A z A C b = z A C c b c x A y A x < y D = E
76 75 ancomsd φ b A c A b c z A C b = z A C c x A y A x < y D = E
77 76 rexlimdvva φ b A c A b c z A C b = z A C c x A y A x < y D = E
78 10 77 mpd φ x A y A x < y D = E