Metamath Proof Explorer


Theorem fpr2g

Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)

Ref Expression
Assertion fpr2g AVBWF:ABCFACFBCF=AFABFB

Proof

Step Hyp Ref Expression
1 simpr AVBWF:ABCF:ABC
2 prid1g AVAAB
3 2 ad2antrr AVBWF:ABCAAB
4 1 3 ffvelcdmd AVBWF:ABCFAC
5 prid2g BWBAB
6 5 ad2antlr AVBWF:ABCBAB
7 1 6 ffvelcdmd AVBWF:ABCFBC
8 ffn F:ABCFFnAB
9 8 adantl AVBWF:ABCFFnAB
10 fnpr2g AVBWFFnABF=AFABFB
11 10 adantr AVBWF:ABCFFnABF=AFABFB
12 9 11 mpbid AVBWF:ABCF=AFABFB
13 4 7 12 3jca AVBWF:ABCFACFBCF=AFABFB
14 10 biimpar AVBWF=AFABFBFFnAB
15 14 3ad2antr3 AVBWFACFBCF=AFABFBFFnAB
16 simpr3 AVBWFACFBCF=AFABFBF=AFABFB
17 2 ad2antrr AVBWFACFBCF=AFABFBAAB
18 simpr1 AVBWFACFBCF=AFABFBFAC
19 17 18 opelxpd AVBWFACFBCF=AFABFBAFAAB×C
20 5 ad2antlr AVBWFACFBCF=AFABFBBAB
21 simpr2 AVBWFACFBCF=AFABFBFBC
22 20 21 opelxpd AVBWFACFBCF=AFABFBBFBAB×C
23 19 22 prssd AVBWFACFBCF=AFABFBAFABFBAB×C
24 16 23 eqsstrd AVBWFACFBCF=AFABFBFAB×C
25 dff2 F:ABCFFnABFAB×C
26 15 24 25 sylanbrc AVBWFACFBCF=AFABFBF:ABC
27 13 26 impbida AVBWF:ABCFACFBCF=AFABFB