Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fpr2g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | prid1g | |
|
3 | 2 | ad2antrr | |
4 | 1 3 | ffvelcdmd | |
5 | prid2g | |
|
6 | 5 | ad2antlr | |
7 | 1 6 | ffvelcdmd | |
8 | ffn | |
|
9 | 8 | adantl | |
10 | fnpr2g | |
|
11 | 10 | adantr | |
12 | 9 11 | mpbid | |
13 | 4 7 12 | 3jca | |
14 | 10 | biimpar | |
15 | 14 | 3ad2antr3 | |
16 | simpr3 | |
|
17 | 2 | ad2antrr | |
18 | simpr1 | |
|
19 | 17 18 | opelxpd | |
20 | 5 | ad2antlr | |
21 | simpr2 | |
|
22 | 20 21 | opelxpd | |
23 | 19 22 | prssd | |
24 | 16 23 | eqsstrd | |
25 | dff2 | |
|
26 | 15 24 25 | sylanbrc | |
27 | 13 26 | impbida | |