Description: A finite product of nonzero terms is nonzero. A version of fprodn0 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodn0f.kph | |
|
fprodn0f.a | |
||
fprodn0f.b | |
||
fprodn0f.bne0 | |
||
Assertion | fprodn0f | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodn0f.kph | |
|
2 | fprodn0f.a | |
|
3 | fprodn0f.b | |
|
4 | fprodn0f.bne0 | |
|
5 | difssd | |
|
6 | eldifi | |
|
7 | 6 | adantr | |
8 | eldifi | |
|
9 | 8 | adantl | |
10 | 7 9 | mulcld | |
11 | eldifsni | |
|
12 | 11 | adantr | |
13 | eldifsni | |
|
14 | 13 | adantl | |
15 | 7 9 12 14 | mulne0d | |
16 | 15 | neneqd | |
17 | ovex | |
|
18 | 17 | elsn | |
19 | 16 18 | sylnibr | |
20 | 10 19 | eldifd | |
21 | 20 | adantl | |
22 | 4 | neneqd | |
23 | elsng | |
|
24 | 3 23 | syl | |
25 | 22 24 | mtbird | |
26 | 3 25 | eldifd | |
27 | ax-1cn | |
|
28 | ax-1ne0 | |
|
29 | 1ex | |
|
30 | 29 | elsn | |
31 | 28 30 | nemtbir | |
32 | eldif | |
|
33 | 27 31 32 | mpbir2an | |
34 | 33 | a1i | |
35 | 1 5 21 2 26 34 | fprodcllemf | |
36 | eldifsni | |
|
37 | 35 36 | syl | |