Metamath Proof Explorer


Theorem fprodn0f

Description: A finite product of nonzero terms is nonzero. A version of fprodn0 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodn0f.kph kφ
fprodn0f.a φAFin
fprodn0f.b φkAB
fprodn0f.bne0 φkAB0
Assertion fprodn0f φkAB0

Proof

Step Hyp Ref Expression
1 fprodn0f.kph kφ
2 fprodn0f.a φAFin
3 fprodn0f.b φkAB
4 fprodn0f.bne0 φkAB0
5 difssd φ0
6 eldifi x0x
7 6 adantr x0y0x
8 eldifi y0y
9 8 adantl x0y0y
10 7 9 mulcld x0y0xy
11 eldifsni x0x0
12 11 adantr x0y0x0
13 eldifsni y0y0
14 13 adantl x0y0y0
15 7 9 12 14 mulne0d x0y0xy0
16 15 neneqd x0y0¬xy=0
17 ovex xyV
18 17 elsn xy0xy=0
19 16 18 sylnibr x0y0¬xy0
20 10 19 eldifd x0y0xy0
21 20 adantl φx0y0xy0
22 4 neneqd φkA¬B=0
23 elsng BB0B=0
24 3 23 syl φkAB0B=0
25 22 24 mtbird φkA¬B0
26 3 25 eldifd φkAB0
27 ax-1cn 1
28 ax-1ne0 10
29 1ex 1V
30 29 elsn 101=0
31 28 30 nemtbir ¬10
32 eldif 101¬10
33 27 31 32 mpbir2an 10
34 33 a1i φ10
35 1 5 21 2 26 34 fprodcllemf φkAB0
36 eldifsni kAB0kAB0
37 35 36 syl φkAB0