Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodsplitsn.ph | |
|
fprodsplitsn.kd | |
||
fprodsplitsn.a | |
||
fprodsplitsn.b | |
||
fprodsplitsn.ba | |
||
fprodsplitsn.c | |
||
fprodsplitsn.d | |
||
fprodsplitsn.dcn | |
||
Assertion | fprodsplitsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplitsn.ph | |
|
2 | fprodsplitsn.kd | |
|
3 | fprodsplitsn.a | |
|
4 | fprodsplitsn.b | |
|
5 | fprodsplitsn.ba | |
|
6 | fprodsplitsn.c | |
|
7 | fprodsplitsn.d | |
|
8 | fprodsplitsn.dcn | |
|
9 | disjsn | |
|
10 | 5 9 | sylibr | |
11 | eqidd | |
|
12 | snfi | |
|
13 | unfi | |
|
14 | 3 12 13 | sylancl | |
15 | 6 | adantlr | |
16 | elunnel1 | |
|
17 | elsni | |
|
18 | 16 17 | syl | |
19 | 18 | adantll | |
20 | 19 7 | syl | |
21 | 8 | ad2antrr | |
22 | 20 21 | eqeltrd | |
23 | 15 22 | pm2.61dan | |
24 | 1 10 11 14 23 | fprodsplitf | |
25 | 2 7 | prodsnf | |
26 | 4 8 25 | syl2anc | |
27 | 26 | oveq2d | |
28 | 24 27 | eqtrd | |