Metamath Proof Explorer


Theorem fprodsplitsn

Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplitsn.ph kφ
fprodsplitsn.kd _kD
fprodsplitsn.a φAFin
fprodsplitsn.b φBV
fprodsplitsn.ba φ¬BA
fprodsplitsn.c φkAC
fprodsplitsn.d k=BC=D
fprodsplitsn.dcn φD
Assertion fprodsplitsn φkABC=kACD

Proof

Step Hyp Ref Expression
1 fprodsplitsn.ph kφ
2 fprodsplitsn.kd _kD
3 fprodsplitsn.a φAFin
4 fprodsplitsn.b φBV
5 fprodsplitsn.ba φ¬BA
6 fprodsplitsn.c φkAC
7 fprodsplitsn.d k=BC=D
8 fprodsplitsn.dcn φD
9 disjsn AB=¬BA
10 5 9 sylibr φAB=
11 eqidd φAB=AB
12 snfi BFin
13 unfi AFinBFinABFin
14 3 12 13 sylancl φABFin
15 6 adantlr φkABkAC
16 elunnel1 kAB¬kAkB
17 elsni kBk=B
18 16 17 syl kAB¬kAk=B
19 18 adantll φkAB¬kAk=B
20 19 7 syl φkAB¬kAC=D
21 8 ad2antrr φkAB¬kAD
22 20 21 eqeltrd φkAB¬kAC
23 15 22 pm2.61dan φkABC
24 1 10 11 14 23 fprodsplitf φkABC=kACkBC
25 2 7 prodsnf BVDkBC=D
26 4 8 25 syl2anc φkBC=D
27 26 oveq2d φkACkBC=kACD
28 24 27 eqtrd φkABC=kACD