Metamath Proof Explorer


Theorem fressnfv

Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004)

Ref Expression
Assertion fressnfv FFnABAFB:BCFBC

Proof

Step Hyp Ref Expression
1 sneq x=Bx=B
2 reseq2 x=BFx=FB
3 2 feq1d x=BFx:xCFB:xC
4 feq2 x=BFB:xCFB:BC
5 3 4 bitrd x=BFx:xCFB:BC
6 1 5 syl x=BFx:xCFB:BC
7 fveq2 x=BFx=FB
8 7 eleq1d x=BFxCFBC
9 6 8 bibi12d x=BFx:xCFxCFB:BCFBC
10 9 imbi2d x=BFFnAFx:xCFxCFFnAFB:BCFBC
11 fnressn FFnAxAFx=xFx
12 vsnid xx
13 fvres xxFxx=Fx
14 12 13 ax-mp Fxx=Fx
15 14 opeq2i xFxx=xFx
16 15 sneqi xFxx=xFx
17 16 eqeq2i Fx=xFxxFx=xFx
18 vex xV
19 18 fsn2 Fx:xCFxxCFx=xFxx
20 iba Fx=xFxxFxxCFxxCFx=xFxx
21 14 eleq1i FxxCFxC
22 20 21 bitr3di Fx=xFxxFxxCFx=xFxxFxC
23 19 22 bitrid Fx=xFxxFx:xCFxC
24 17 23 sylbir Fx=xFxFx:xCFxC
25 11 24 syl FFnAxAFx:xCFxC
26 25 expcom xAFFnAFx:xCFxC
27 10 26 vtoclga BAFFnAFB:BCFBC
28 27 impcom FFnABAFB:BCFBC