Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgpadd.w | |
|
frgpadd.g | |
||
frgpadd.r | |
||
frgpinv.n | |
||
frgpinv.m | |
||
Assertion | frgpinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpadd.w | |
|
2 | frgpadd.g | |
|
3 | frgpadd.r | |
|
4 | frgpinv.n | |
|
5 | frgpinv.m | |
|
6 | fviss | |
|
7 | 1 6 | eqsstri | |
8 | 7 | sseli | |
9 | revcl | |
|
10 | 8 9 | syl | |
11 | 5 | efgmf | |
12 | wrdco | |
|
13 | 10 11 12 | sylancl | |
14 | 1 | efgrcl | |
15 | 14 | simprd | |
16 | 13 15 | eleqtrrd | |
17 | eqid | |
|
18 | 1 2 3 17 | frgpadd | |
19 | 16 18 | mpdan | |
20 | 1 3 | efger | |
21 | 20 | a1i | |
22 | eqid | |
|
23 | 1 3 5 22 | efginvrel2 | |
24 | 21 23 | erthi | |
25 | 2 3 | frgp0 | |
26 | 25 | adantr | |
27 | 14 26 | syl | |
28 | 27 | simprd | |
29 | 19 24 28 | 3eqtrd | |
30 | 27 | simpld | |
31 | eqid | |
|
32 | 2 3 1 31 | frgpeccl | |
33 | 2 3 1 31 | frgpeccl | |
34 | 16 33 | syl | |
35 | eqid | |
|
36 | 31 17 35 4 | grpinvid1 | |
37 | 30 32 34 36 | syl3anc | |
38 | 29 37 | mpbird | |