Metamath Proof Explorer


Theorem frgr1v

Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion frgr1v GUSGraphVtxG=NGFriendGraph

Proof

Step Hyp Ref Expression
1 simpl GUSGraphVtxG=NGUSGraph
2 ral0 l∃!xNxNxlEdgG
3 sneq k=Nk=N
4 3 difeq2d k=NNk=NN
5 difid NN=
6 4 5 eqtrdi k=NNk=
7 preq2 k=Nxk=xN
8 7 preq1d k=Nxkxl=xNxl
9 8 sseq1d k=NxkxlEdgGxNxlEdgG
10 9 reubidv k=N∃!xNxkxlEdgG∃!xNxNxlEdgG
11 6 10 raleqbidv k=NlNk∃!xNxkxlEdgGl∃!xNxNxlEdgG
12 11 ralsng NVkNlNk∃!xNxkxlEdgGl∃!xNxNxlEdgG
13 2 12 mpbiri NVkNlNk∃!xNxkxlEdgG
14 snprc ¬NVN=
15 rzal N=kNlNk∃!xNxkxlEdgG
16 14 15 sylbi ¬NVkNlNk∃!xNxkxlEdgG
17 13 16 pm2.61i kNlNk∃!xNxkxlEdgG
18 id VtxG=NVtxG=N
19 difeq1 VtxG=NVtxGk=Nk
20 reueq1 VtxG=N∃!xVtxGxkxlEdgG∃!xNxkxlEdgG
21 19 20 raleqbidv VtxG=NlVtxGk∃!xVtxGxkxlEdgGlNk∃!xNxkxlEdgG
22 18 21 raleqbidv VtxG=NkVtxGlVtxGk∃!xVtxGxkxlEdgGkNlNk∃!xNxkxlEdgG
23 22 adantl GUSGraphVtxG=NkVtxGlVtxGk∃!xVtxGxkxlEdgGkNlNk∃!xNxkxlEdgG
24 17 23 mpbiri GUSGraphVtxG=NkVtxGlVtxGk∃!xVtxGxkxlEdgG
25 eqid VtxG=VtxG
26 eqid EdgG=EdgG
27 25 26 isfrgr GFriendGraphGUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG
28 1 24 27 sylanbrc GUSGraphVtxG=NGFriendGraph