Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | frgr1v | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | ral0 | |
|
3 | sneq | |
|
4 | 3 | difeq2d | |
5 | difid | |
|
6 | 4 5 | eqtrdi | |
7 | preq2 | |
|
8 | 7 | preq1d | |
9 | 8 | sseq1d | |
10 | 9 | reubidv | |
11 | 6 10 | raleqbidv | |
12 | 11 | ralsng | |
13 | 2 12 | mpbiri | |
14 | snprc | |
|
15 | rzal | |
|
16 | 14 15 | sylbi | |
17 | 13 16 | pm2.61i | |
18 | id | |
|
19 | difeq1 | |
|
20 | reueq1 | |
|
21 | 19 20 | raleqbidv | |
22 | 18 21 | raleqbidv | |
23 | 22 | adantl | |
24 | 17 23 | mpbiri | |
25 | eqid | |
|
26 | eqid | |
|
27 | 25 26 | isfrgr | |
28 | 1 24 27 | sylanbrc | |