| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v |
|
| 2 |
|
frgrncvvdeq.d |
|
| 3 |
|
ovexd |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
simpl |
|
| 8 |
7
|
ad2antlr |
|
| 9 |
|
eldifi |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
|
eldif |
|
| 13 |
|
velsn |
|
| 14 |
13
|
biimpri |
|
| 15 |
14
|
equcoms |
|
| 16 |
15
|
necon3bi |
|
| 17 |
12 16
|
simplbiim |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
ad2antlr |
|
| 20 |
|
simpr |
|
| 21 |
|
simpl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
eqid |
|
| 24 |
1 4 5 6 8 11 19 20 22 23
|
frgrncvvdeqlem10 |
|
| 25 |
3 24
|
hasheqf1od |
|
| 26 |
|
frgrusgr |
|
| 27 |
26 7
|
anim12i |
|
| 28 |
27
|
adantr |
|
| 29 |
1
|
hashnbusgrvd |
|
| 30 |
28 29
|
syl |
|
| 31 |
26 10
|
anim12i |
|
| 32 |
31
|
adantr |
|
| 33 |
1
|
hashnbusgrvd |
|
| 34 |
32 33
|
syl |
|
| 35 |
25 30 34
|
3eqtr3d |
|
| 36 |
2
|
fveq1i |
|
| 37 |
2
|
fveq1i |
|
| 38 |
35 36 37
|
3eqtr4g |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
ralrimivva |
|