Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in Huneke p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 10-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrncvvdeq.v | |
|
frgrncvvdeq.d | |
||
Assertion | frgrncvvdeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v | |
|
2 | frgrncvvdeq.d | |
|
3 | ovexd | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | simpl | |
|
8 | 7 | ad2antlr | |
9 | eldifi | |
|
10 | 9 | adantl | |
11 | 10 | ad2antlr | |
12 | eldif | |
|
13 | velsn | |
|
14 | 13 | biimpri | |
15 | 14 | equcoms | |
16 | 15 | necon3bi | |
17 | 12 16 | simplbiim | |
18 | 17 | adantl | |
19 | 18 | ad2antlr | |
20 | simpr | |
|
21 | simpl | |
|
22 | 21 | adantr | |
23 | eqid | |
|
24 | 1 4 5 6 8 11 19 20 22 23 | frgrncvvdeqlem10 | |
25 | 3 24 | hasheqf1od | |
26 | frgrusgr | |
|
27 | 26 7 | anim12i | |
28 | 27 | adantr | |
29 | 1 | hashnbusgrvd | |
30 | 28 29 | syl | |
31 | 26 10 | anim12i | |
32 | 31 | adantr | |
33 | 1 | hashnbusgrvd | |
34 | 32 33 | syl | |
35 | 25 30 34 | 3eqtr3d | |
36 | 2 | fveq1i | |
37 | 2 | fveq1i | |
38 | 35 36 37 | 3eqtr4g | |
39 | 38 | ex | |
40 | 39 | ralrimivva | |