Metamath Proof Explorer


Theorem frgrncvvdeq

Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in Huneke p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v V=VtxG
frgrncvvdeq.d D=VtxDegG
Assertion frgrncvvdeq GFriendGraphxVyVxyGNeighbVtxxDx=Dy

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v V=VtxG
2 frgrncvvdeq.d D=VtxDegG
3 ovexd GFriendGraphxVyVxyGNeighbVtxxGNeighbVtxxV
4 eqid EdgG=EdgG
5 eqid GNeighbVtxx=GNeighbVtxx
6 eqid GNeighbVtxy=GNeighbVtxy
7 simpl xVyVxxV
8 7 ad2antlr GFriendGraphxVyVxyGNeighbVtxxxV
9 eldifi yVxyV
10 9 adantl xVyVxyV
11 10 ad2antlr GFriendGraphxVyVxyGNeighbVtxxyV
12 eldif yVxyV¬yx
13 velsn yxy=x
14 13 biimpri y=xyx
15 14 equcoms x=yyx
16 15 necon3bi ¬yxxy
17 12 16 simplbiim yVxxy
18 17 adantl xVyVxxy
19 18 ad2antlr GFriendGraphxVyVxyGNeighbVtxxxy
20 simpr GFriendGraphxVyVxyGNeighbVtxxyGNeighbVtxx
21 simpl GFriendGraphxVyVxGFriendGraph
22 21 adantr GFriendGraphxVyVxyGNeighbVtxxGFriendGraph
23 eqid aGNeighbVtxxιbGNeighbVtxy|abEdgG=aGNeighbVtxxιbGNeighbVtxy|abEdgG
24 1 4 5 6 8 11 19 20 22 23 frgrncvvdeqlem10 GFriendGraphxVyVxyGNeighbVtxxaGNeighbVtxxιbGNeighbVtxy|abEdgG:GNeighbVtxx1-1 ontoGNeighbVtxy
25 3 24 hasheqf1od GFriendGraphxVyVxyGNeighbVtxxGNeighbVtxx=GNeighbVtxy
26 frgrusgr GFriendGraphGUSGraph
27 26 7 anim12i GFriendGraphxVyVxGUSGraphxV
28 27 adantr GFriendGraphxVyVxyGNeighbVtxxGUSGraphxV
29 1 hashnbusgrvd GUSGraphxVGNeighbVtxx=VtxDegGx
30 28 29 syl GFriendGraphxVyVxyGNeighbVtxxGNeighbVtxx=VtxDegGx
31 26 10 anim12i GFriendGraphxVyVxGUSGraphyV
32 31 adantr GFriendGraphxVyVxyGNeighbVtxxGUSGraphyV
33 1 hashnbusgrvd GUSGraphyVGNeighbVtxy=VtxDegGy
34 32 33 syl GFriendGraphxVyVxyGNeighbVtxxGNeighbVtxy=VtxDegGy
35 25 30 34 3eqtr3d GFriendGraphxVyVxyGNeighbVtxxVtxDegGx=VtxDegGy
36 2 fveq1i Dx=VtxDegGx
37 2 fveq1i Dy=VtxDegGy
38 35 36 37 3eqtr4g GFriendGraphxVyVxyGNeighbVtxxDx=Dy
39 38 ex GFriendGraphxVyVxyGNeighbVtxxDx=Dy
40 39 ralrimivva GFriendGraphxVyVxyGNeighbVtxxDx=Dy