| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsneq.a |  | 
						
							| 2 |  | fsneq.b |  | 
						
							| 3 |  | fsneq.f |  | 
						
							| 4 |  | fsneq.g |  | 
						
							| 5 |  | eqfnfv |  | 
						
							| 6 | 3 4 5 | syl2anc |  | 
						
							| 7 |  | snidg |  | 
						
							| 8 | 1 7 | syl |  | 
						
							| 9 | 2 | eqcomi |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 8 10 | eleqtrd |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 14 15 | eqeq12d |  | 
						
							| 17 | 16 | rspcva |  | 
						
							| 18 | 12 13 17 | syl2anc |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 |  | simpl |  | 
						
							| 21 | 2 | eleq2i |  | 
						
							| 22 | 21 | biimpi |  | 
						
							| 23 |  | velsn |  | 
						
							| 24 | 22 23 | sylib |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 | 24 | fveq2d |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 20 26 28 | 3eqtr4d |  | 
						
							| 30 | 29 | adantll |  | 
						
							| 31 | 30 | ralrimiva |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 19 32 | impbid |  | 
						
							| 34 | 6 33 | bitrd |  |