Metamath Proof Explorer


Theorem fsumcl2lem

Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcllem.1 φS
fsumcllem.2 φxSySx+yS
fsumcllem.3 φAFin
fsumcllem.4 φkABS
fsumcl2lem.5 φA
Assertion fsumcl2lem φkABS

Proof

Step Hyp Ref Expression
1 fsumcllem.1 φS
2 fsumcllem.2 φxSySx+yS
3 fsumcllem.3 φAFin
4 fsumcllem.4 φkABS
5 fsumcl2lem.5 φA
6 5 a1d φ¬kABSA
7 6 necon4bd φA=kABS
8 sumfc mAkABm=kAB
9 fveq2 m=fxkABm=kABfx
10 simprl φAf:1A1-1 ontoAA
11 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
12 1 ad2antrr φAf:1A1-1 ontoAmAS
13 4 fmpttd φkAB:AS
14 13 adantr φAf:1A1-1 ontoAkAB:AS
15 14 ffvelcdmda φAf:1A1-1 ontoAmAkABmS
16 12 15 sseldd φAf:1A1-1 ontoAmAkABm
17 f1of f:1A1-1 ontoAf:1AA
18 11 17 syl φAf:1A1-1 ontoAf:1AA
19 fvco3 f:1AAx1AkABfx=kABfx
20 18 19 sylan φAf:1A1-1 ontoAx1AkABfx=kABfx
21 9 10 11 16 20 fsum φAf:1A1-1 ontoAmAkABm=seq1+kABfA
22 8 21 eqtr3id φAf:1A1-1 ontoAkAB=seq1+kABfA
23 nnuz =1
24 10 23 eleqtrdi φAf:1A1-1 ontoAA1
25 fco kAB:ASf:1AAkABf:1AS
26 14 18 25 syl2anc φAf:1A1-1 ontoAkABf:1AS
27 26 ffvelcdmda φAf:1A1-1 ontoAx1AkABfxS
28 2 adantlr φAf:1A1-1 ontoAxSySx+yS
29 24 27 28 seqcl φAf:1A1-1 ontoAseq1+kABfAS
30 22 29 eqeltrd φAf:1A1-1 ontoAkABS
31 30 expr φAf:1A1-1 ontoAkABS
32 31 exlimdv φAff:1A1-1 ontoAkABS
33 32 expimpd φAff:1A1-1 ontoAkABS
34 fz1f1o AFinA=Aff:1A1-1 ontoA
35 3 34 syl φA=Aff:1A1-1 ontoA
36 7 33 35 mpjaod φkABS