| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumcllem.1 |  | 
						
							| 2 |  | fsumcllem.2 |  | 
						
							| 3 |  | fsumcllem.3 |  | 
						
							| 4 |  | fsumcllem.4 |  | 
						
							| 5 |  | fsumcl2lem.5 |  | 
						
							| 6 | 5 | a1d |  | 
						
							| 7 | 6 | necon4bd |  | 
						
							| 8 |  | sumfc |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 |  | simprl |  | 
						
							| 11 |  | simprr |  | 
						
							| 12 | 1 | ad2antrr |  | 
						
							| 13 | 4 | fmpttd |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | ffvelcdmda |  | 
						
							| 16 | 12 15 | sseldd |  | 
						
							| 17 |  | f1of |  | 
						
							| 18 | 11 17 | syl |  | 
						
							| 19 |  | fvco3 |  | 
						
							| 20 | 18 19 | sylan |  | 
						
							| 21 | 9 10 11 16 20 | fsum |  | 
						
							| 22 | 8 21 | eqtr3id |  | 
						
							| 23 |  | nnuz |  | 
						
							| 24 | 10 23 | eleqtrdi |  | 
						
							| 25 |  | fco |  | 
						
							| 26 | 14 18 25 | syl2anc |  | 
						
							| 27 | 26 | ffvelcdmda |  | 
						
							| 28 | 2 | adantlr |  | 
						
							| 29 | 24 27 28 | seqcl |  | 
						
							| 30 | 22 29 | eqeltrd |  | 
						
							| 31 | 30 | expr |  | 
						
							| 32 | 31 | exlimdv |  | 
						
							| 33 | 32 | expimpd |  | 
						
							| 34 |  | fz1f1o |  | 
						
							| 35 | 3 34 | syl |  | 
						
							| 36 | 7 33 35 | mpjaod |  |