| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mul02 |
|
| 2 |
1
|
adantl |
|
| 3 |
2
|
eqcomd |
|
| 4 |
|
sumeq1 |
|
| 5 |
|
sum0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
|
fveq2 |
|
| 8 |
|
hash0 |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
9
|
oveq1d |
|
| 11 |
6 10
|
eqeq12d |
|
| 12 |
3 11
|
syl5ibrcom |
|
| 13 |
|
eqidd |
|
| 14 |
|
simprl |
|
| 15 |
|
simprr |
|
| 16 |
|
simpllr |
|
| 17 |
|
simplr |
|
| 18 |
|
elfznn |
|
| 19 |
|
fvconst2g |
|
| 20 |
17 18 19
|
syl2an |
|
| 21 |
13 14 15 16 20
|
fsum |
|
| 22 |
|
ser1const |
|
| 23 |
22
|
ad2ant2lr |
|
| 24 |
21 23
|
eqtrd |
|
| 25 |
24
|
expr |
|
| 26 |
25
|
exlimdv |
|
| 27 |
26
|
expimpd |
|
| 28 |
|
fz1f1o |
|
| 29 |
28
|
adantr |
|
| 30 |
12 27 29
|
mpjaod |
|