Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 14-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fucbas.q | |
|
fuchom.n | |
||
Assertion | fuchom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | |
|
2 | fuchom.n | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | simpl | |
|
7 | simpr | |
|
8 | eqid | |
|
9 | 1 3 2 4 5 6 7 8 | fuccofval | |
10 | 1 3 2 4 5 6 7 9 | fucval | |
11 | catstr | |
|
12 | homid | |
|
13 | snsstp2 | |
|
14 | 2 | ovexi | |
15 | 14 | a1i | |
16 | eqid | |
|
17 | 10 11 12 13 15 16 | strfv3 | |
18 | 17 | eqcomd | |
19 | 12 | str0 | |
20 | 2 | natffn | |
21 | funcrcl | |
|
22 | 21 | con3i | |
23 | 22 | eq0rdv | |
24 | 23 | xpeq2d | |
25 | xp0 | |
|
26 | 24 25 | eqtrdi | |
27 | 26 | fneq2d | |
28 | 20 27 | mpbii | |
29 | fn0 | |
|
30 | 28 29 | sylib | |
31 | fnfuc | |
|
32 | 31 | fndmi | |
33 | 32 | ndmov | |
34 | 1 33 | eqtrid | |
35 | 34 | fveq2d | |
36 | 19 30 35 | 3eqtr4a | |
37 | 18 36 | pm2.61i | |