Metamath Proof Explorer


Theorem fuchom

Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses fucbas.q Q=CFuncCatD
fuchom.n N=CNatD
Assertion fuchom N=HomQ

Proof

Step Hyp Ref Expression
1 fucbas.q Q=CFuncCatD
2 fuchom.n N=CNatD
3 eqid CFuncD=CFuncD
4 eqid BaseC=BaseC
5 eqid compD=compD
6 simpl CCatDCatCCat
7 simpr CCatDCatDCat
8 eqid compQ=compQ
9 1 3 2 4 5 6 7 8 fuccofval CCatDCatcompQ=vCFuncD×CFuncD,hCFuncD1stv/f2ndv/gbgNh,afNgxBaseCbx1stfx1stgxcompD1sthxax
10 1 3 2 4 5 6 7 9 fucval CCatDCatQ=BasendxCFuncDHomndxNcompndxcompQ
11 catstr BasendxCFuncDHomndxNcompndxcompQStruct115
12 homid Hom=SlotHomndx
13 snsstp2 HomndxNBasendxCFuncDHomndxNcompndxcompQ
14 2 ovexi NV
15 14 a1i CCatDCatNV
16 eqid HomQ=HomQ
17 10 11 12 13 15 16 strfv3 CCatDCatHomQ=N
18 17 eqcomd CCatDCatN=HomQ
19 12 str0 =Hom
20 2 natffn NFnCFuncD×CFuncD
21 funcrcl fCFuncDCCatDCat
22 21 con3i ¬CCatDCat¬fCFuncD
23 22 eq0rdv ¬CCatDCatCFuncD=
24 23 xpeq2d ¬CCatDCatCFuncD×CFuncD=CFuncD×
25 xp0 CFuncD×=
26 24 25 eqtrdi ¬CCatDCatCFuncD×CFuncD=
27 26 fneq2d ¬CCatDCatNFnCFuncD×CFuncDNFn
28 20 27 mpbii ¬CCatDCatNFn
29 fn0 NFnN=
30 28 29 sylib ¬CCatDCatN=
31 fnfuc FuncCatFnCat×Cat
32 31 fndmi domFuncCat=Cat×Cat
33 32 ndmov ¬CCatDCatCFuncCatD=
34 1 33 eqtrid ¬CCatDCatQ=
35 34 fveq2d ¬CCatDCatHomQ=Hom
36 19 30 35 3eqtr4a ¬CCatDCatN=HomQ
37 18 36 pm2.61i N=HomQ