Metamath Proof Explorer


Theorem fuchom

Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses fucbas.q Q = C FuncCat D
fuchom.n N = C Nat D
Assertion fuchom N = Hom Q

Proof

Step Hyp Ref Expression
1 fucbas.q Q = C FuncCat D
2 fuchom.n N = C Nat D
3 eqid C Func D = C Func D
4 eqid Base C = Base C
5 eqid comp D = comp D
6 simpl C Cat D Cat C Cat
7 simpr C Cat D Cat D Cat
8 eqid comp Q = comp Q
9 1 3 2 4 5 6 7 8 fuccofval C Cat D Cat comp Q = v C Func D × C Func D , h C Func D 1 st v / f 2 nd v / g b g N h , a f N g x Base C b x 1 st f x 1 st g x comp D 1 st h x a x
10 1 3 2 4 5 6 7 9 fucval C Cat D Cat Q = Base ndx C Func D Hom ndx N comp ndx comp Q
11 catstr Base ndx C Func D Hom ndx N comp ndx comp Q Struct 1 15
12 homid Hom = Slot Hom ndx
13 snsstp2 Hom ndx N Base ndx C Func D Hom ndx N comp ndx comp Q
14 2 ovexi N V
15 14 a1i C Cat D Cat N V
16 eqid Hom Q = Hom Q
17 10 11 12 13 15 16 strfv3 C Cat D Cat Hom Q = N
18 17 eqcomd C Cat D Cat N = Hom Q
19 12 str0 = Hom
20 2 natffn N Fn C Func D × C Func D
21 funcrcl f C Func D C Cat D Cat
22 21 con3i ¬ C Cat D Cat ¬ f C Func D
23 22 eq0rdv ¬ C Cat D Cat C Func D =
24 23 xpeq2d ¬ C Cat D Cat C Func D × C Func D = C Func D ×
25 xp0 C Func D × =
26 24 25 eqtrdi ¬ C Cat D Cat C Func D × C Func D =
27 26 fneq2d ¬ C Cat D Cat N Fn C Func D × C Func D N Fn
28 20 27 mpbii ¬ C Cat D Cat N Fn
29 fn0 N Fn N =
30 28 29 sylib ¬ C Cat D Cat N =
31 fnfuc FuncCat Fn Cat × Cat
32 31 fndmi dom FuncCat = Cat × Cat
33 32 ndmov ¬ C Cat D Cat C FuncCat D =
34 1 33 syl5eq ¬ C Cat D Cat Q =
35 34 fveq2d ¬ C Cat D Cat Hom Q = Hom
36 19 30 35 3eqtr4a ¬ C Cat D Cat N = Hom Q
37 18 36 pm2.61i N = Hom Q