Metamath Proof Explorer


Theorem fuchomOLD

Description: Obsolete proof of fuchom as of 14-Oct-2024. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fucbas.q Q=CFuncCatD
fuchom.n N=CNatD
Assertion fuchomOLD N=HomQ

Proof

Step Hyp Ref Expression
1 fucbas.q Q=CFuncCatD
2 fuchom.n N=CNatD
3 eqid CFuncD=CFuncD
4 eqid BaseC=BaseC
5 eqid compD=compD
6 simpl CCatDCatCCat
7 simpr CCatDCatDCat
8 eqid compQ=compQ
9 1 3 2 4 5 6 7 8 fuccofval CCatDCatcompQ=vCFuncD×CFuncD,hCFuncD1stv/f2ndv/gbgNh,afNgxBaseCbx1stfx1stgxcompD1sthxax
10 1 3 2 4 5 6 7 9 fucval CCatDCatQ=BasendxCFuncDHomndxNcompndxcompQ
11 catstr BasendxCFuncDHomndxNcompndxcompQStruct115
12 homid Hom=SlotHomndx
13 snsstp2 HomndxNBasendxCFuncDHomndxNcompndxcompQ
14 2 ovexi NV
15 14 a1i CCatDCatNV
16 eqid HomQ=HomQ
17 10 11 12 13 15 16 strfv3 CCatDCatHomQ=N
18 17 eqcomd CCatDCatN=HomQ
19 df-hom Hom=Slot14
20 19 str0 =Hom
21 2 natffn NFnCFuncD×CFuncD
22 funcrcl fCFuncDCCatDCat
23 22 con3i ¬CCatDCat¬fCFuncD
24 23 eq0rdv ¬CCatDCatCFuncD=
25 24 xpeq2d ¬CCatDCatCFuncD×CFuncD=CFuncD×
26 xp0 CFuncD×=
27 25 26 eqtrdi ¬CCatDCatCFuncD×CFuncD=
28 27 fneq2d ¬CCatDCatNFnCFuncD×CFuncDNFn
29 21 28 mpbii ¬CCatDCatNFn
30 fn0 NFnN=
31 29 30 sylib ¬CCatDCatN=
32 fnfuc FuncCatFnCat×Cat
33 32 fndmi domFuncCat=Cat×Cat
34 33 ndmov ¬CCatDCatCFuncCatD=
35 1 34 eqtrid ¬CCatDCatQ=
36 35 fveq2d ¬CCatDCatHomQ=Hom
37 20 31 36 3eqtr4a ¬CCatDCatN=HomQ
38 18 37 pm2.61i N=HomQ