Metamath Proof Explorer


Theorem fucorid

Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor, in maps-to notation. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
fucolid.i I = Id Q
fucorid.q Q = C FuncCat D
fucorid.a φ A G D Nat E H
fucorid.f φ F C Func D
Assertion fucorid φ A G F P H F I F = x Base C A 1 st F x

Proof

Step Hyp Ref Expression
1 fucolid.p Could not format ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
2 fucolid.i I = Id Q
3 fucorid.q Q = C FuncCat D
4 fucorid.a φ A G D Nat E H
5 fucorid.f φ F C Func D
6 eqid Id D = Id D
7 3 2 6 5 fucid φ I F = Id D 1 st F
8 7 oveq2d φ A G F P H F I F = A G F P H F Id D 1 st F
9 5 func1st2nd φ 1 st F C Func D 2 nd F
10 9 funcrcl2 φ C Cat
11 eqid D Nat E = D Nat E
12 11 4 nat1st2nd φ A 1 st G 2 nd G D Nat E 1 st H 2 nd H
13 11 12 natrcl2 φ 1 st G D Func E 2 nd G
14 13 funcrcl2 φ D Cat
15 13 funcrcl3 φ E Cat
16 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
17 10 14 15 16 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
18 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
19 17 18 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
20 1 opeq2d Could not format ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
21 19 20 eqtrd Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
22 eqidd φ G F = G F
23 eqidd φ H F = H F
24 eqid C Nat D = C Nat D
25 3 24 6 5 fucidcl φ Id D 1 st F F C Nat D F
26 21 22 23 25 4 fuco22a φ A G F P H F Id D 1 st F = x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x
27 eqid Base C = Base C
28 eqid Base D = Base D
29 9 adantr φ x Base C 1 st F C Func D 2 nd F
30 27 28 29 funcf1 φ x Base C 1 st F : Base C Base D
31 simpr φ x Base C x Base C
32 30 31 fvco3d φ x Base C Id D 1 st F x = Id D 1 st F x
33 32 fveq2d φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = 1 st F x 2 nd G 1 st F x Id D 1 st F x
34 eqid Id E = Id E
35 13 adantr φ x Base C 1 st G D Func E 2 nd G
36 30 31 ffvelcdmd φ x Base C 1 st F x Base D
37 28 6 34 35 36 funcid φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = Id E 1 st G 1 st F x
38 33 37 eqtrd φ x Base C 1 st F x 2 nd G 1 st F x Id D 1 st F x = Id E 1 st G 1 st F x
39 38 oveq2d φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x Id E 1 st G 1 st F x
40 eqid Base E = Base E
41 eqid Hom E = Hom E
42 15 adantr φ x Base C E Cat
43 28 40 35 funcf1 φ x Base C 1 st G : Base D Base E
44 43 36 ffvelcdmd φ x Base C 1 st G 1 st F x Base E
45 eqid comp E = comp E
46 11 12 natrcl3 φ 1 st H D Func E 2 nd H
47 46 adantr φ x Base C 1 st H D Func E 2 nd H
48 28 40 47 funcf1 φ x Base C 1 st H : Base D Base E
49 48 36 ffvelcdmd φ x Base C 1 st H 1 st F x Base E
50 12 adantr φ x Base C A 1 st G 2 nd G D Nat E 1 st H 2 nd H
51 11 50 28 41 36 natcl φ x Base C A 1 st F x 1 st G 1 st F x Hom E 1 st H 1 st F x
52 40 41 34 42 44 45 49 51 catrid φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x Id E 1 st G 1 st F x = A 1 st F x
53 39 52 eqtrd φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = A 1 st F x
54 53 mpteq2dva φ x Base C A 1 st F x 1 st G 1 st F x 1 st G 1 st F x comp E 1 st H 1 st F x 1 st F x 2 nd G 1 st F x Id D 1 st F x = x Base C A 1 st F x
55 8 26 54 3eqtrd φ A G F P H F I F = x Base C A 1 st F x