Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fullpropd.1 | |
|
fullpropd.2 | |
||
fullpropd.3 | |
||
fullpropd.4 | |
||
fullpropd.a | |
||
fullpropd.b | |
||
fullpropd.c | |
||
fullpropd.d | |
||
Assertion | fullpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullpropd.1 | |
|
2 | fullpropd.2 | |
|
3 | fullpropd.3 | |
|
4 | fullpropd.4 | |
|
5 | fullpropd.a | |
|
6 | fullpropd.b | |
|
7 | fullpropd.c | |
|
8 | fullpropd.d | |
|
9 | relfull | |
|
10 | relfull | |
|
11 | 1 | homfeqbas | |
12 | 11 | adantr | |
13 | 12 | adantr | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 3 | ad3antrrr | |
18 | eqid | |
|
19 | simpllr | |
|
20 | 18 14 19 | funcf1 | |
21 | simplr | |
|
22 | 20 21 | ffvelcdmd | |
23 | simpr | |
|
24 | 20 23 | ffvelcdmd | |
25 | 14 15 16 17 22 24 | homfeqval | |
26 | 25 | eqeq2d | |
27 | 13 26 | raleqbidva | |
28 | 12 27 | raleqbidva | |
29 | 28 | pm5.32da | |
30 | 1 2 3 4 5 6 7 8 | funcpropd | |
31 | 30 | breqd | |
32 | 31 | anbi1d | |
33 | 29 32 | bitrd | |
34 | 18 15 | isfull | |
35 | eqid | |
|
36 | 35 16 | isfull | |
37 | 33 34 36 | 3bitr4g | |
38 | 9 10 37 | eqbrrdiv | |