Metamath Proof Explorer


Theorem fullpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fullpropd.1 φHom𝑓A=Hom𝑓B
fullpropd.2 φcomp𝑓A=comp𝑓B
fullpropd.3 φHom𝑓C=Hom𝑓D
fullpropd.4 φcomp𝑓C=comp𝑓D
fullpropd.a φAV
fullpropd.b φBV
fullpropd.c φCV
fullpropd.d φDV
Assertion fullpropd φAFullC=BFullD

Proof

Step Hyp Ref Expression
1 fullpropd.1 φHom𝑓A=Hom𝑓B
2 fullpropd.2 φcomp𝑓A=comp𝑓B
3 fullpropd.3 φHom𝑓C=Hom𝑓D
4 fullpropd.4 φcomp𝑓C=comp𝑓D
5 fullpropd.a φAV
6 fullpropd.b φBV
7 fullpropd.c φCV
8 fullpropd.d φDV
9 relfull RelAFullC
10 relfull RelBFullD
11 1 homfeqbas φBaseA=BaseB
12 11 adantr φfAFuncCgBaseA=BaseB
13 12 adantr φfAFuncCgxBaseABaseA=BaseB
14 eqid BaseC=BaseC
15 eqid HomC=HomC
16 eqid HomD=HomD
17 3 ad3antrrr φfAFuncCgxBaseAyBaseAHom𝑓C=Hom𝑓D
18 eqid BaseA=BaseA
19 simpllr φfAFuncCgxBaseAyBaseAfAFuncCg
20 18 14 19 funcf1 φfAFuncCgxBaseAyBaseAf:BaseABaseC
21 simplr φfAFuncCgxBaseAyBaseAxBaseA
22 20 21 ffvelcdmd φfAFuncCgxBaseAyBaseAfxBaseC
23 simpr φfAFuncCgxBaseAyBaseAyBaseA
24 20 23 ffvelcdmd φfAFuncCgxBaseAyBaseAfyBaseC
25 14 15 16 17 22 24 homfeqval φfAFuncCgxBaseAyBaseAfxHomCfy=fxHomDfy
26 25 eqeq2d φfAFuncCgxBaseAyBaseAranxgy=fxHomCfyranxgy=fxHomDfy
27 13 26 raleqbidva φfAFuncCgxBaseAyBaseAranxgy=fxHomCfyyBaseBranxgy=fxHomDfy
28 12 27 raleqbidva φfAFuncCgxBaseAyBaseAranxgy=fxHomCfyxBaseByBaseBranxgy=fxHomDfy
29 28 pm5.32da φfAFuncCgxBaseAyBaseAranxgy=fxHomCfyfAFuncCgxBaseByBaseBranxgy=fxHomDfy
30 1 2 3 4 5 6 7 8 funcpropd φAFuncC=BFuncD
31 30 breqd φfAFuncCgfBFuncDg
32 31 anbi1d φfAFuncCgxBaseByBaseBranxgy=fxHomDfyfBFuncDgxBaseByBaseBranxgy=fxHomDfy
33 29 32 bitrd φfAFuncCgxBaseAyBaseAranxgy=fxHomCfyfBFuncDgxBaseByBaseBranxgy=fxHomDfy
34 18 15 isfull fAFullCgfAFuncCgxBaseAyBaseAranxgy=fxHomCfy
35 eqid BaseB=BaseB
36 35 16 isfull fBFullDgfBFuncDgxBaseByBaseBranxgy=fxHomDfy
37 33 34 36 3bitr4g φfAFullCgfBFullDg
38 9 10 37 eqbrrdiv φAFullC=BFullD