Metamath Proof Explorer


Theorem funcringcsetcALTV2lem7

Description: Lemma 7 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
funcringcsetcALTV2.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV2lem7 φXBXGXIdRX=IdSFX

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 funcringcsetcALTV2.g φG=xB,yBIxRingHomy
8 1 2 3 4 5 6 7 funcringcsetcALTV2lem5 φXBXBXGX=IXRingHomX
9 8 anabsan2 φXBXGX=IXRingHomX
10 eqid IdR=IdR
11 5 adantr φXBUWUni
12 simpr φXBXB
13 eqid BaseX=BaseX
14 1 3 10 11 12 13 ringcid φXBIdRX=IBaseX
15 9 14 fveq12d φXBXGXIdRX=IXRingHomXIBaseX
16 1 3 5 ringcbas φB=URing
17 16 eleq2d φXBXURing
18 elin XURingXUXRing
19 18 simprbi XURingXRing
20 17 19 syl6bi φXBXRing
21 20 imp φXBXRing
22 13 idrhm XRingIBaseXXRingHomX
23 fvresi IBaseXXRingHomXIXRingHomXIBaseX=IBaseX
24 21 22 23 3syl φXBIXRingHomXIBaseX=IBaseX
25 1 2 3 4 5 6 funcringcsetcALTV2lem1 φXBFX=BaseX
26 25 fveq2d φXBIdSFX=IdSBaseX
27 eqid IdS=IdS
28 1 3 5 ringcbasbas φXBBaseXU
29 2 27 11 28 setcid φXBIdSBaseX=IBaseX
30 26 29 eqtr2d φXBIBaseX=IdSFX
31 15 24 30 3eqtrd φXBXGXIdRX=IdSFX