Metamath Proof Explorer


Theorem funcringcsetclem8ALTV

Description: Lemma 8 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetclem8ALTV φXBYBXGY:XHomRYFXHomSFY

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 f1oi IXRingHomY:XRingHomY1-1 ontoXRingHomY
9 f1of IXRingHomY:XRingHomY1-1 ontoXRingHomYIXRingHomY:XRingHomYXRingHomY
10 8 9 mp1i φXBYBIXRingHomY:XRingHomYXRingHomY
11 eqid BaseX=BaseX
12 eqid BaseY=BaseY
13 11 12 rhmf fXRingHomYf:BaseXBaseY
14 fvex BaseYV
15 fvex BaseXV
16 14 15 pm3.2i BaseYVBaseXV
17 elmapg BaseYVBaseXVfBaseYBaseXf:BaseXBaseY
18 17 bicomd BaseYVBaseXVf:BaseXBaseYfBaseYBaseX
19 16 18 mp1i φXBYBf:BaseXBaseYfBaseYBaseX
20 19 biimpa φXBYBf:BaseXBaseYfBaseYBaseX
21 simpr XBYBYB
22 1 2 3 4 5 6 funcringcsetclem1ALTV φYBFY=BaseY
23 21 22 sylan2 φXBYBFY=BaseY
24 simpl XBYBXB
25 1 2 3 4 5 6 funcringcsetclem1ALTV φXBFX=BaseX
26 24 25 sylan2 φXBYBFX=BaseX
27 23 26 oveq12d φXBYBFYFX=BaseYBaseX
28 27 adantr φXBYBf:BaseXBaseYFYFX=BaseYBaseX
29 20 28 eleqtrrd φXBYBf:BaseXBaseYfFYFX
30 29 ex φXBYBf:BaseXBaseYfFYFX
31 13 30 syl5 φXBYBfXRingHomYfFYFX
32 31 ssrdv φXBYBXRingHomYFYFX
33 10 32 fssd φXBYBIXRingHomY:XRingHomYFYFX
34 1 2 3 4 5 6 7 funcringcsetclem5ALTV φXBYBXGY=IXRingHomY
35 5 adantr φXBYBUWUni
36 eqid HomR=HomR
37 24 adantl φXBYBXB
38 21 adantl φXBYBYB
39 1 3 35 36 37 38 ringchomALTV φXBYBXHomRY=XRingHomY
40 eqid HomS=HomS
41 1 2 3 4 5 6 funcringcsetclem2ALTV φXBFXU
42 24 41 sylan2 φXBYBFXU
43 1 2 3 4 5 6 funcringcsetclem2ALTV φYBFYU
44 21 43 sylan2 φXBYBFYU
45 2 35 40 42 44 setchom φXBYBFXHomSFY=FYFX
46 34 39 45 feq123d φXBYBXGY:XHomRYFXHomSFYIXRingHomY:XRingHomYFYFX
47 33 46 mpbird φXBYBXGY:XHomRYFXHomSFY