Metamath Proof Explorer


Theorem fusgreghash2wspv

Description: According to statement 7 in Huneke p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp . (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 17-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V=VtxG
fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
Assertion fusgreghash2wspv GFinUSGraphvVVtxDegGv=KMv=KK1

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V=VtxG
2 fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
3 1 2 fusgr2wsp2nb GFinUSGraphvVMv=cGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
4 3 fveq2d GFinUSGraphvVMv=cGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
5 4 adantr GFinUSGraphvVVtxDegGv=KMv=cGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
6 1 eleq2i vVvVtxG
7 nbfiusgrfi GFinUSGraphvVtxGGNeighbVtxvFin
8 6 7 sylan2b GFinUSGraphvVGNeighbVtxvFin
9 8 adantr GFinUSGraphvVVtxDegGv=KGNeighbVtxvFin
10 eqid GNeighbVtxvc=GNeighbVtxvc
11 snfi ⟨“cvd”⟩Fin
12 11 a1i GFinUSGraphvVVtxDegGv=KcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩Fin
13 1 nbgrssvtx GNeighbVtxvV
14 13 a1i GFinUSGraphvVcGNeighbVtxvGNeighbVtxvV
15 14 ssdifd GFinUSGraphvVcGNeighbVtxvGNeighbVtxvcVc
16 iunss1 GNeighbVtxvcVcdGNeighbVtxvc⟨“cvd”⟩dVc⟨“cvd”⟩
17 15 16 syl GFinUSGraphvVcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩dVc⟨“cvd”⟩
18 17 ralrimiva GFinUSGraphvVcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩dVc⟨“cvd”⟩
19 simpr GFinUSGraphvVvV
20 s3iunsndisj vVDisjcGNeighbVtxvdVc⟨“cvd”⟩
21 19 20 syl GFinUSGraphvVDisjcGNeighbVtxvdVc⟨“cvd”⟩
22 disjss2 cGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩dVc⟨“cvd”⟩DisjcGNeighbVtxvdVc⟨“cvd”⟩DisjcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
23 18 21 22 sylc GFinUSGraphvVDisjcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
24 23 adantr GFinUSGraphvVVtxDegGv=KDisjcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩
25 19 adantr GFinUSGraphvVVtxDegGv=KvV
26 25 anim1ci GFinUSGraphvVVtxDegGv=KcGNeighbVtxvcGNeighbVtxvvV
27 s3sndisj cGNeighbVtxvvVDisjdGNeighbVtxvc⟨“cvd”⟩
28 26 27 syl GFinUSGraphvVVtxDegGv=KcGNeighbVtxvDisjdGNeighbVtxvc⟨“cvd”⟩
29 s3cli ⟨“cvd”⟩WordV
30 hashsng ⟨“cvd”⟩WordV⟨“cvd”⟩=1
31 29 30 mp1i GFinUSGraphvVVtxDegGv=KcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩=1
32 9 10 12 24 28 31 hash2iun1dif1 GFinUSGraphvVVtxDegGv=KcGNeighbVtxvdGNeighbVtxvc⟨“cvd”⟩=GNeighbVtxvGNeighbVtxv1
33 fusgrusgr GFinUSGraphGUSGraph
34 1 hashnbusgrvd GUSGraphvVGNeighbVtxv=VtxDegGv
35 33 34 sylan GFinUSGraphvVGNeighbVtxv=VtxDegGv
36 id GNeighbVtxv=VtxDegGvGNeighbVtxv=VtxDegGv
37 oveq1 GNeighbVtxv=VtxDegGvGNeighbVtxv1=VtxDegGv1
38 36 37 oveq12d GNeighbVtxv=VtxDegGvGNeighbVtxvGNeighbVtxv1=VtxDegGvVtxDegGv1
39 35 38 syl GFinUSGraphvVGNeighbVtxvGNeighbVtxv1=VtxDegGvVtxDegGv1
40 id VtxDegGv=KVtxDegGv=K
41 oveq1 VtxDegGv=KVtxDegGv1=K1
42 40 41 oveq12d VtxDegGv=KVtxDegGvVtxDegGv1=KK1
43 39 42 sylan9eq GFinUSGraphvVVtxDegGv=KGNeighbVtxvGNeighbVtxv1=KK1
44 5 32 43 3eqtrd GFinUSGraphvVVtxDegGv=KMv=KK1
45 44 ex GFinUSGraphvVVtxDegGv=KMv=KK1
46 45 ralrimiva GFinUSGraphvVVtxDegGv=KMv=KK1