Description: According to statement 7 in Huneke p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp . (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 17-May-2021) (Proof shortened by AV, 12-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrhash2wsp.v | |
|
fusgreg2wsp.m | |
||
Assertion | fusgreghash2wspv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrhash2wsp.v | |
|
2 | fusgreg2wsp.m | |
|
3 | 1 2 | fusgr2wsp2nb | |
4 | 3 | fveq2d | |
5 | 4 | adantr | |
6 | 1 | eleq2i | |
7 | nbfiusgrfi | |
|
8 | 6 7 | sylan2b | |
9 | 8 | adantr | |
10 | eqid | |
|
11 | snfi | |
|
12 | 11 | a1i | |
13 | 1 | nbgrssvtx | |
14 | 13 | a1i | |
15 | 14 | ssdifd | |
16 | iunss1 | |
|
17 | 15 16 | syl | |
18 | 17 | ralrimiva | |
19 | simpr | |
|
20 | s3iunsndisj | |
|
21 | 19 20 | syl | |
22 | disjss2 | |
|
23 | 18 21 22 | sylc | |
24 | 23 | adantr | |
25 | 19 | adantr | |
26 | 25 | anim1ci | |
27 | s3sndisj | |
|
28 | 26 27 | syl | |
29 | s3cli | |
|
30 | hashsng | |
|
31 | 29 30 | mp1i | |
32 | 9 10 12 24 28 31 | hash2iun1dif1 | |
33 | fusgrusgr | |
|
34 | 1 | hashnbusgrvd | |
35 | 33 34 | sylan | |
36 | id | |
|
37 | oveq1 | |
|
38 | 36 37 | oveq12d | |
39 | 35 38 | syl | |
40 | id | |
|
41 | oveq1 | |
|
42 | 40 41 | oveq12d | |
43 | 39 42 | sylan9eq | |
44 | 5 32 43 | 3eqtrd | |
45 | 44 | ex | |
46 | 45 | ralrimiva | |