Metamath Proof Explorer


Theorem fvelrn

Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996)

Ref Expression
Assertion fvelrn FunFAdomFFAranF

Proof

Step Hyp Ref Expression
1 eleq1 x=AxdomFAdomF
2 1 anbi2d x=AFunFxdomFFunFAdomF
3 fveq2 x=AFx=FA
4 3 eleq1d x=AFxranFFAranF
5 2 4 imbi12d x=AFunFxdomFFxranFFunFAdomFFAranF
6 funfvop FunFxdomFxFxF
7 vex xV
8 opeq1 y=xyFx=xFx
9 8 eleq1d y=xyFxFxFxF
10 7 9 spcev xFxFyyFxF
11 6 10 syl FunFxdomFyyFxF
12 fvex FxV
13 12 elrn2 FxranFyyFxF
14 11 13 sylibr FunFxdomFFxranF
15 5 14 vtoclg AdomFFunFAdomFFAranF
16 15 anabsi7 FunFAdomFFAranF