Metamath Proof Explorer


Theorem fveqressseq

Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypothesis fveqdmss.1 D = dom B
Assertion fveqressseq Fun B ran B x D A x = B x A D = B

Proof

Step Hyp Ref Expression
1 fveqdmss.1 D = dom B
2 1 fveqdmss Fun B ran B x D A x = B x D dom A
3 dmres dom A D = D dom A
4 incom D dom A = dom A D
5 sseqin2 D dom A dom A D = D
6 5 biimpi D dom A dom A D = D
7 4 6 eqtrid D dom A D dom A = D
8 3 7 eqtrid D dom A dom A D = D
9 8 1 eqtrdi D dom A dom A D = dom B
10 2 9 syl Fun B ran B x D A x = B x dom A D = dom B
11 fvres x D A D x = A x
12 11 adantl Fun B ran B x D A D x = A x
13 id A x = B x A x = B x
14 12 13 sylan9eq Fun B ran B x D A x = B x A D x = B x
15 14 ex Fun B ran B x D A x = B x A D x = B x
16 15 ralimdva Fun B ran B x D A x = B x x D A D x = B x
17 16 3impia Fun B ran B x D A x = B x x D A D x = B x
18 2 7 syl Fun B ran B x D A x = B x D dom A = D
19 3 18 eqtrid Fun B ran B x D A x = B x dom A D = D
20 19 raleqdv Fun B ran B x D A x = B x x dom A D A D x = B x x D A D x = B x
21 17 20 mpbird Fun B ran B x D A x = B x x dom A D A D x = B x
22 simpll Fun B ran B x D Fun B
23 1 eleq2i x D x dom B
24 23 biimpi x D x dom B
25 24 adantl Fun B ran B x D x dom B
26 simplr Fun B ran B x D ran B
27 nelrnfvne Fun B x dom B ran B B x
28 22 25 26 27 syl3anc Fun B ran B x D B x
29 neeq1 A x = B x A x B x
30 28 29 syl5ibrcom Fun B ran B x D A x = B x A x
31 30 ralimdva Fun B ran B x D A x = B x x D A x
32 31 3impia Fun B ran B x D A x = B x x D A x
33 fvn0ssdmfun x D A x D dom A Fun A D
34 33 simprd x D A x Fun A D
35 32 34 syl Fun B ran B x D A x = B x Fun A D
36 simp1 Fun B ran B x D A x = B x Fun B
37 eqfunfv Fun A D Fun B A D = B dom A D = dom B x dom A D A D x = B x
38 35 36 37 syl2anc Fun B ran B x D A x = B x A D = B dom A D = dom B x dom A D A D x = B x
39 10 21 38 mpbir2and Fun B ran B x D A x = B x A D = B