Metamath Proof Explorer


Theorem fveqressseq

Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypothesis fveqdmss.1 D=domB
Assertion fveqressseq FunBranBxDAx=BxAD=B

Proof

Step Hyp Ref Expression
1 fveqdmss.1 D=domB
2 1 fveqdmss FunBranBxDAx=BxDdomA
3 dmres domAD=DdomA
4 incom DdomA=domAD
5 sseqin2 DdomAdomAD=D
6 5 biimpi DdomAdomAD=D
7 4 6 eqtrid DdomADdomA=D
8 3 7 eqtrid DdomAdomAD=D
9 8 1 eqtrdi DdomAdomAD=domB
10 2 9 syl FunBranBxDAx=BxdomAD=domB
11 fvres xDADx=Ax
12 11 adantl FunBranBxDADx=Ax
13 id Ax=BxAx=Bx
14 12 13 sylan9eq FunBranBxDAx=BxADx=Bx
15 14 ex FunBranBxDAx=BxADx=Bx
16 15 ralimdva FunBranBxDAx=BxxDADx=Bx
17 16 3impia FunBranBxDAx=BxxDADx=Bx
18 2 7 syl FunBranBxDAx=BxDdomA=D
19 3 18 eqtrid FunBranBxDAx=BxdomAD=D
20 19 raleqdv FunBranBxDAx=BxxdomADADx=BxxDADx=Bx
21 17 20 mpbird FunBranBxDAx=BxxdomADADx=Bx
22 simpll FunBranBxDFunB
23 1 eleq2i xDxdomB
24 23 biimpi xDxdomB
25 24 adantl FunBranBxDxdomB
26 simplr FunBranBxDranB
27 nelrnfvne FunBxdomBranBBx
28 22 25 26 27 syl3anc FunBranBxDBx
29 neeq1 Ax=BxAxBx
30 28 29 syl5ibrcom FunBranBxDAx=BxAx
31 30 ralimdva FunBranBxDAx=BxxDAx
32 31 3impia FunBranBxDAx=BxxDAx
33 fvn0ssdmfun xDAxDdomAFunAD
34 33 simprd xDAxFunAD
35 32 34 syl FunBranBxDAx=BxFunAD
36 simp1 FunBranBxDAx=BxFunB
37 eqfunfv FunADFunBAD=BdomAD=domBxdomADADx=Bx
38 35 36 37 syl2anc FunBranBxDAx=BxAD=BdomAD=domBxdomADADx=Bx
39 10 21 38 mpbir2and FunBranBxDAx=BxAD=B