Metamath Proof Explorer


Theorem fvimacnvALT

Description: Alternate proof of fvimacnv , based on funimass3 . If funimass3 is ever proved directly, as opposed to using funimacnv pointwise, then the proof of funimacnv should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvimacnvALT FunFAdomFFABAF-1B

Proof

Step Hyp Ref Expression
1 snssi AdomFAdomF
2 funimass3 FunFAdomFFABAF-1B
3 1 2 sylan2 FunFAdomFFABAF-1B
4 fvex FAV
5 4 snss FABFAB
6 eqid domF=domF
7 df-fn FFndomFFunFdomF=domF
8 7 biimpri FunFdomF=domFFFndomF
9 6 8 mpan2 FunFFFndomF
10 fnsnfv FFndomFAdomFFA=FA
11 9 10 sylan FunFAdomFFA=FA
12 11 sseq1d FunFAdomFFABFAB
13 5 12 bitrid FunFAdomFFABFAB
14 snssg AdomFAF-1BAF-1B
15 14 adantl FunFAdomFAF-1BAF-1B
16 3 13 15 3bitr4d FunFAdomFFABAF-1B