Metamath Proof Explorer


Theorem fvmptss

Description: If all the values of the mapping are subsets of a class C , then so is any evaluation of the mapping, even if D is not in the base set A . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis mptrcl.1 F=xAB
Assertion fvmptss xABCFDC

Proof

Step Hyp Ref Expression
1 mptrcl.1 F=xAB
2 1 dmmptss domFA
3 2 sseli DdomFDA
4 fveq2 y=DFy=FD
5 4 sseq1d y=DFyCFDC
6 5 imbi2d y=DxABCFyCxABCFDC
7 nfcv _xy
8 nfra1 xxABC
9 nfmpt1 _xxAB
10 1 9 nfcxfr _xF
11 10 7 nffv _xFy
12 nfcv _xC
13 11 12 nfss xFyC
14 8 13 nfim xxABCFyC
15 fveq2 x=yFx=Fy
16 15 sseq1d x=yFxCFyC
17 16 imbi2d x=yxABCFxCxABCFyC
18 1 dmmpt domF=xA|BV
19 18 reqabi xdomFxABV
20 1 fvmpt2 xABVFx=B
21 eqimss Fx=BFxB
22 20 21 syl xABVFxB
23 19 22 sylbi xdomFFxB
24 ndmfv ¬xdomFFx=
25 0ss B
26 24 25 eqsstrdi ¬xdomFFxB
27 23 26 pm2.61i FxB
28 rsp xABCxABC
29 28 impcom xAxABCBC
30 27 29 sstrid xAxABCFxC
31 30 ex xAxABCFxC
32 7 14 17 31 vtoclgaf yAxABCFyC
33 6 32 vtoclga DAxABCFDC
34 33 impcom xABCDAFDC
35 3 34 sylan2 xABCDdomFFDC
36 ndmfv ¬DdomFFD=
37 36 adantl xABC¬DdomFFD=
38 0ss C
39 37 38 eqsstrdi xABC¬DdomFFDC
40 35 39 pm2.61dan xABCFDC