Metamath Proof Explorer


Theorem fznatpl1

Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Assertion fznatpl1 NI1N1I+11N

Proof

Step Hyp Ref Expression
1 1red NI1N11
2 elfzelz I1N1I
3 2 zred I1N1I
4 3 adantl NI1N1I
5 peano2re II+1
6 4 5 syl NI1N1I+1
7 peano2re 11+1
8 1 7 syl NI1N11+1
9 1 ltp1d NI1N11<1+1
10 elfzle1 I1N11I
11 10 adantl NI1N11I
12 1re 1
13 leadd1 1I11I1+1I+1
14 12 12 13 mp3an13 I1I1+1I+1
15 4 14 syl NI1N11I1+1I+1
16 11 15 mpbid NI1N11+1I+1
17 1 8 6 9 16 ltletrd NI1N11<I+1
18 1 6 17 ltled NI1N11I+1
19 elfzle2 I1N1IN1
20 19 adantl NI1N1IN1
21 nnz NN
22 21 adantr NI1N1N
23 22 zred NI1N1N
24 leaddsub I1NI+1NIN1
25 12 24 mp3an2 INI+1NIN1
26 3 23 25 syl2an2 NI1N1I+1NIN1
27 20 26 mpbird NI1N1I+1N
28 2 peano2zd I1N1I+1
29 1z 1
30 elfz I+11NI+11N1I+1I+1N
31 29 30 mp3an2 I+1NI+11N1I+1I+1N
32 28 22 31 syl2an2 NI1N1I+11N1I+1I+1N
33 18 27 32 mpbir2and NI1N1I+11N