Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | fznatpl1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red | |
|
2 | elfzelz | |
|
3 | 2 | zred | |
4 | 3 | adantl | |
5 | peano2re | |
|
6 | 4 5 | syl | |
7 | peano2re | |
|
8 | 1 7 | syl | |
9 | 1 | ltp1d | |
10 | elfzle1 | |
|
11 | 10 | adantl | |
12 | 1re | |
|
13 | leadd1 | |
|
14 | 12 12 13 | mp3an13 | |
15 | 4 14 | syl | |
16 | 11 15 | mpbid | |
17 | 1 8 6 9 16 | ltletrd | |
18 | 1 6 17 | ltled | |
19 | elfzle2 | |
|
20 | 19 | adantl | |
21 | nnz | |
|
22 | 21 | adantr | |
23 | 22 | zred | |
24 | leaddsub | |
|
25 | 12 24 | mp3an2 | |
26 | 3 23 25 | syl2an2 | |
27 | 20 26 | mpbird | |
28 | 2 | peano2zd | |
29 | 1z | |
|
30 | elfz | |
|
31 | 29 30 | mp3an2 | |
32 | 28 22 31 | syl2an2 | |
33 | 18 27 32 | mpbir2and | |