Metamath Proof Explorer


Theorem fzostep1

Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzostep1 AB..^CA+1B..^CA+1=C

Proof

Step Hyp Ref Expression
1 elfzoel1 AB..^CB
2 uzid BBB
3 peano2uz BBB+1B
4 fzoss1 B+1BB+1..^C+1B..^C+1
5 1 2 3 4 4syl AB..^CB+1..^C+1B..^C+1
6 1z 1
7 fzoaddel AB..^C1A+1B+1..^C+1
8 6 7 mpan2 AB..^CA+1B+1..^C+1
9 5 8 sseldd AB..^CA+1B..^C+1
10 elfzoel2 AB..^CC
11 elfzolt3 AB..^CB<C
12 zre BB
13 zre CC
14 ltle BCB<CBC
15 12 13 14 syl2an BCB<CBC
16 1 10 15 syl2anc AB..^CB<CBC
17 11 16 mpd AB..^CBC
18 eluz2 CBBCBC
19 1 10 17 18 syl3anbrc AB..^CCB
20 fzosplitsni CBA+1B..^C+1A+1B..^CA+1=C
21 19 20 syl AB..^CA+1B..^C+1A+1B..^CA+1=C
22 9 21 mpbid AB..^CA+1B..^CA+1=C