Metamath Proof Explorer


Theorem gamcvg2

Description: An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f F = m m + 1 m A A m + 1
gamcvg2.a φ A
Assertion gamcvg2 φ seq 1 × F Γ A A

Proof

Step Hyp Ref Expression
1 gamcvg2.f F = m m + 1 m A A m + 1
2 gamcvg2.a φ A
3 eqid m A log m + 1 m log A m + 1 = m A log m + 1 m log A m + 1
4 1 2 3 gamcvg2lem φ exp seq 1 + m A log m + 1 m log A m + 1 = seq 1 × F
5 3 2 gamcvg φ exp seq 1 + m A log m + 1 m log A m + 1 Γ A A
6 4 5 eqbrtrrd φ seq 1 × F Γ A A