Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow , this bound is strict. (Contributed by AV, 20-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | gbowge7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbowgt5 | |
|
2 | gbowpos | |
|
3 | 5nn | |
|
4 | 3 | nnzi | |
5 | nnz | |
|
6 | zltp1le | |
|
7 | 4 5 6 | sylancr | |
8 | 7 | biimpd | |
9 | 2 8 | syl | |
10 | 5p1e6 | |
|
11 | 10 | breq1i | |
12 | 6re | |
|
13 | 2 | nnred | |
14 | leloe | |
|
15 | 12 13 14 | sylancr | |
16 | 11 15 | bitrid | |
17 | 6nn | |
|
18 | 17 | nnzi | |
19 | 2 | nnzd | |
20 | zltp1le | |
|
21 | 20 | biimpd | |
22 | 18 19 21 | sylancr | |
23 | 6p1e7 | |
|
24 | 23 | breq1i | |
25 | 22 24 | imbitrdi | |
26 | isgbow | |
|
27 | eleq1 | |
|
28 | 6even | |
|
29 | evennodd | |
|
30 | pm2.21 | |
|
31 | 28 29 30 | mp2b | |
32 | 27 31 | syl6bir | |
33 | 32 | com12 | |
34 | 33 | adantr | |
35 | 26 34 | sylbi | |
36 | 25 35 | jaod | |
37 | 16 36 | sylbid | |
38 | 9 37 | syld | |
39 | 1 38 | mpd | |