Metamath Proof Explorer


Theorem gbowge7

Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowge7 ZGoldbachOddW7Z

Proof

Step Hyp Ref Expression
1 gbowgt5 ZGoldbachOddW5<Z
2 gbowpos ZGoldbachOddWZ
3 5nn 5
4 3 nnzi 5
5 nnz ZZ
6 zltp1le 5Z5<Z5+1Z
7 4 5 6 sylancr Z5<Z5+1Z
8 7 biimpd Z5<Z5+1Z
9 2 8 syl ZGoldbachOddW5<Z5+1Z
10 5p1e6 5+1=6
11 10 breq1i 5+1Z6Z
12 6re 6
13 2 nnred ZGoldbachOddWZ
14 leloe 6Z6Z6<Z6=Z
15 12 13 14 sylancr ZGoldbachOddW6Z6<Z6=Z
16 11 15 bitrid ZGoldbachOddW5+1Z6<Z6=Z
17 6nn 6
18 17 nnzi 6
19 2 nnzd ZGoldbachOddWZ
20 zltp1le 6Z6<Z6+1Z
21 20 biimpd 6Z6<Z6+1Z
22 18 19 21 sylancr ZGoldbachOddW6<Z6+1Z
23 6p1e7 6+1=7
24 23 breq1i 6+1Z7Z
25 22 24 imbitrdi ZGoldbachOddW6<Z7Z
26 isgbow ZGoldbachOddWZOddpqrZ=p+q+r
27 eleq1 6=Z6OddZOdd
28 6even 6Even
29 evennodd 6Even¬6Odd
30 pm2.21 ¬6Odd6Odd7Z
31 28 29 30 mp2b 6Odd7Z
32 27 31 syl6bir 6=ZZOdd7Z
33 32 com12 ZOdd6=Z7Z
34 33 adantr ZOddpqrZ=p+q+r6=Z7Z
35 26 34 sylbi ZGoldbachOddW6=Z7Z
36 25 35 jaod ZGoldbachOddW6<Z6=Z7Z
37 16 36 sylbid ZGoldbachOddW5+1Z7Z
38 9 37 syld ZGoldbachOddW5<Z7Z
39 1 38 mpd ZGoldbachOddW7Z