| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gchaclem.1 |
|
| 2 |
|
gchaclem.3 |
|
| 3 |
|
gchaclem.4 |
|
| 4 |
3
|
simpld |
|
| 5 |
|
reldom |
|
| 6 |
5
|
brrelex2i |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
canth2g |
|
| 9 |
|
sdomdom |
|
| 10 |
7 8 9
|
3syl |
|
| 11 |
|
domtr |
|
| 12 |
4 10 11
|
syl2anc |
|
| 13 |
2
|
adantr |
|
| 14 |
|
domtr |
|
| 15 |
1 4 14
|
syl2anc |
|
| 16 |
15
|
adantr |
|
| 17 |
|
pwdjuidm |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
simpr |
|
| 20 |
|
gchdomtri |
|
| 21 |
13 18 19 20
|
syl3anc |
|
| 22 |
21
|
ex |
|
| 23 |
|
pwdom |
|
| 24 |
|
domtr |
|
| 25 |
24
|
ex |
|
| 26 |
4 23 25
|
3syl |
|
| 27 |
3
|
simprd |
|
| 28 |
26 27
|
jaod |
|
| 29 |
22 28
|
syld |
|
| 30 |
12 29
|
jca |
|