Metamath Proof Explorer


Theorem gchaclem

Description: Lemma for gchac (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses gchaclem.1 φ ω A
gchaclem.3 φ 𝒫 C GCH
gchaclem.4 φ A C B 𝒫 C 𝒫 A B
Assertion gchaclem φ A 𝒫 C B 𝒫 𝒫 C 𝒫 A B

Proof

Step Hyp Ref Expression
1 gchaclem.1 φ ω A
2 gchaclem.3 φ 𝒫 C GCH
3 gchaclem.4 φ A C B 𝒫 C 𝒫 A B
4 3 simpld φ A C
5 reldom Rel
6 5 brrelex2i A C C V
7 4 6 syl φ C V
8 canth2g C V C 𝒫 C
9 sdomdom C 𝒫 C C 𝒫 C
10 7 8 9 3syl φ C 𝒫 C
11 domtr A C C 𝒫 C A 𝒫 C
12 4 10 11 syl2anc φ A 𝒫 C
13 2 adantr φ B 𝒫 𝒫 C 𝒫 C GCH
14 domtr ω A A C ω C
15 1 4 14 syl2anc φ ω C
16 15 adantr φ B 𝒫 𝒫 C ω C
17 pwdjuidm ω C 𝒫 C ⊔︀ 𝒫 C 𝒫 C
18 16 17 syl φ B 𝒫 𝒫 C 𝒫 C ⊔︀ 𝒫 C 𝒫 C
19 simpr φ B 𝒫 𝒫 C B 𝒫 𝒫 C
20 gchdomtri 𝒫 C GCH 𝒫 C ⊔︀ 𝒫 C 𝒫 C B 𝒫 𝒫 C 𝒫 C B B 𝒫 C
21 13 18 19 20 syl3anc φ B 𝒫 𝒫 C 𝒫 C B B 𝒫 C
22 21 ex φ B 𝒫 𝒫 C 𝒫 C B B 𝒫 C
23 pwdom A C 𝒫 A 𝒫 C
24 domtr 𝒫 A 𝒫 C 𝒫 C B 𝒫 A B
25 24 ex 𝒫 A 𝒫 C 𝒫 C B 𝒫 A B
26 4 23 25 3syl φ 𝒫 C B 𝒫 A B
27 3 simprd φ B 𝒫 C 𝒫 A B
28 26 27 jaod φ 𝒫 C B B 𝒫 C 𝒫 A B
29 22 28 syld φ B 𝒫 𝒫 C 𝒫 A B
30 12 29 jca φ A 𝒫 C B 𝒫 𝒫 C 𝒫 A B