Metamath Proof Explorer


Theorem gchaclem

Description: Lemma for gchac (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses gchaclem.1 φωA
gchaclem.3 φ𝒫CGCH
gchaclem.4 φACB𝒫C𝒫AB
Assertion gchaclem φA𝒫CB𝒫𝒫C𝒫AB

Proof

Step Hyp Ref Expression
1 gchaclem.1 φωA
2 gchaclem.3 φ𝒫CGCH
3 gchaclem.4 φACB𝒫C𝒫AB
4 3 simpld φAC
5 reldom Rel
6 5 brrelex2i ACCV
7 4 6 syl φCV
8 canth2g CVC𝒫C
9 sdomdom C𝒫CC𝒫C
10 7 8 9 3syl φC𝒫C
11 domtr ACC𝒫CA𝒫C
12 4 10 11 syl2anc φA𝒫C
13 2 adantr φB𝒫𝒫C𝒫CGCH
14 domtr ωAACωC
15 1 4 14 syl2anc φωC
16 15 adantr φB𝒫𝒫CωC
17 pwdjuidm ωC𝒫C⊔︀𝒫C𝒫C
18 16 17 syl φB𝒫𝒫C𝒫C⊔︀𝒫C𝒫C
19 simpr φB𝒫𝒫CB𝒫𝒫C
20 gchdomtri 𝒫CGCH𝒫C⊔︀𝒫C𝒫CB𝒫𝒫C𝒫CBB𝒫C
21 13 18 19 20 syl3anc φB𝒫𝒫C𝒫CBB𝒫C
22 21 ex φB𝒫𝒫C𝒫CBB𝒫C
23 pwdom AC𝒫A𝒫C
24 domtr 𝒫A𝒫C𝒫CB𝒫AB
25 24 ex 𝒫A𝒫C𝒫CB𝒫AB
26 4 23 25 3syl φ𝒫CB𝒫AB
27 3 simprd φB𝒫C𝒫AB
28 26 27 jaod φ𝒫CBB𝒫C𝒫AB
29 22 28 syld φB𝒫𝒫C𝒫AB
30 12 29 jca φA𝒫CB𝒫𝒫C𝒫AB