Metamath Proof Explorer


Theorem geoisum1

Description: The infinite sum of A ^ 1 + A ^ 2 ... is ( A / ( 1 - A ) ) . (Contributed by NM, 1-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum1 AA<1kAk=A1A

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1zzd AA<11
3 oveq2 n=kAn=Ak
4 eqid nAn=nAn
5 ovex AkV
6 3 4 5 fvmpt knAnk=Ak
7 6 adantl AA<1knAnk=Ak
8 simpl AA<1A
9 nnnn0 kk0
10 expcl Ak0Ak
11 8 9 10 syl2an AA<1kAk
12 simpr AA<1A<1
13 1nn0 10
14 13 a1i AA<110
15 elnnuz kk1
16 15 7 sylan2br AA<1k1nAnk=Ak
17 8 12 14 16 geolim2 AA<1seq1+nAnA11A
18 1 2 7 11 17 isumclim AA<1kAk=A11A
19 exp1 AA1=A
20 19 adantr AA<1A1=A
21 20 oveq1d AA<1A11A=A1A
22 18 21 eqtrd AA<1kAk=A1A