Metamath Proof Explorer


Theorem glbconxN

Description: De Morgan's law for GLB and LUB. Index-set version of glbconN , where we read S as S ( i ) . (Contributed by NM, 17-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses glbcon.b B=BaseK
glbcon.u U=lubK
glbcon.g G=glbK
glbcon.o ˙=ocK
Assertion glbconxN KHLiISBGx|iIx=S=˙Ux|iIx=˙S

Proof

Step Hyp Ref Expression
1 glbcon.b B=BaseK
2 glbcon.u U=lubK
3 glbcon.g G=glbK
4 glbcon.o ˙=ocK
5 vex yV
6 eqeq1 x=yx=Sy=S
7 6 rexbidv x=yiIx=SiIy=S
8 5 7 elab yx|iIx=SiIy=S
9 nfra1 iiISB
10 nfv iyB
11 rsp iISBiISB
12 eleq1a SBy=SyB
13 11 12 syl6 iISBiIy=SyB
14 9 10 13 rexlimd iISBiIy=SyB
15 8 14 biimtrid iISByx|iIx=SyB
16 15 ssrdv iISBx|iIx=SB
17 1 2 3 4 glbconN KHLx|iIx=SBGx|iIx=S=˙UyB|˙yx|iIx=S
18 16 17 sylan2 KHLiISBGx|iIx=S=˙UyB|˙yx|iIx=S
19 fvex ˙yV
20 eqeq1 x=˙yx=S˙y=S
21 20 rexbidv x=˙yiIx=SiI˙y=S
22 19 21 elab ˙yx|iIx=SiI˙y=S
23 22 rabbii yB|˙yx|iIx=S=yB|iI˙y=S
24 df-rab yB|iI˙y=S=y|yBiI˙y=S
25 23 24 eqtri yB|˙yx|iIx=S=y|yBiI˙y=S
26 nfv iKHL
27 26 9 nfan iKHLiISB
28 rspa iISBiISB
29 hlop KHLKOP
30 1 4 opoccl KOPSB˙SB
31 29 30 sylan KHLSB˙SB
32 eleq1a ˙SBy=˙SyB
33 31 32 syl KHLSBy=˙SyB
34 33 pm4.71rd KHLSBy=˙SyBy=˙S
35 1 4 opcon2b KOPSByBS=˙yy=˙S
36 29 35 syl3an1 KHLSByBS=˙yy=˙S
37 36 3expa KHLSByBS=˙yy=˙S
38 eqcom S=˙y˙y=S
39 37 38 bitr3di KHLSByBy=˙S˙y=S
40 39 pm5.32da KHLSByBy=˙SyB˙y=S
41 34 40 bitrd KHLSBy=˙SyB˙y=S
42 28 41 sylan2 KHLiISBiIy=˙SyB˙y=S
43 42 anassrs KHLiISBiIy=˙SyB˙y=S
44 27 43 rexbida KHLiISBiIy=˙SiIyB˙y=S
45 r19.42v iIyB˙y=SyBiI˙y=S
46 44 45 bitr2di KHLiISByBiI˙y=SiIy=˙S
47 46 abbidv KHLiISBy|yBiI˙y=S=y|iIy=˙S
48 eqeq1 y=xy=˙Sx=˙S
49 48 rexbidv y=xiIy=˙SiIx=˙S
50 49 cbvabv y|iIy=˙S=x|iIx=˙S
51 47 50 eqtrdi KHLiISBy|yBiI˙y=S=x|iIx=˙S
52 25 51 eqtrid KHLiISByB|˙yx|iIx=S=x|iIx=˙S
53 52 fveq2d KHLiISBUyB|˙yx|iIx=S=Ux|iIx=˙S
54 53 fveq2d KHLiISB˙UyB|˙yx|iIx=S=˙Ux|iIx=˙S
55 18 54 eqtrd KHLiISBGx|iIx=S=˙Ux|iIx=˙S