Metamath Proof Explorer


Theorem glbconxN

Description: De Morgan's law for GLB and LUB. Index-set version of glbconN , where we read S as S ( i ) . (Contributed by NM, 17-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses glbcon.b 𝐵 = ( Base ‘ 𝐾 )
glbcon.u 𝑈 = ( lub ‘ 𝐾 )
glbcon.g 𝐺 = ( glb ‘ 𝐾 )
glbcon.o = ( oc ‘ 𝐾 )
Assertion glbconxN ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐺 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ) = ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } ) ) )

Proof

Step Hyp Ref Expression
1 glbcon.b 𝐵 = ( Base ‘ 𝐾 )
2 glbcon.u 𝑈 = ( lub ‘ 𝐾 )
3 glbcon.g 𝐺 = ( glb ‘ 𝐾 )
4 glbcon.o = ( oc ‘ 𝐾 )
5 vex 𝑦 ∈ V
6 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑆𝑦 = 𝑆 ) )
7 6 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑖𝐼 𝑥 = 𝑆 ↔ ∃ 𝑖𝐼 𝑦 = 𝑆 ) )
8 5 7 elab ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ↔ ∃ 𝑖𝐼 𝑦 = 𝑆 )
9 nfra1 𝑖𝑖𝐼 𝑆𝐵
10 nfv 𝑖 𝑦𝐵
11 rsp ( ∀ 𝑖𝐼 𝑆𝐵 → ( 𝑖𝐼𝑆𝐵 ) )
12 eleq1a ( 𝑆𝐵 → ( 𝑦 = 𝑆𝑦𝐵 ) )
13 11 12 syl6 ( ∀ 𝑖𝐼 𝑆𝐵 → ( 𝑖𝐼 → ( 𝑦 = 𝑆𝑦𝐵 ) ) )
14 9 10 13 rexlimd ( ∀ 𝑖𝐼 𝑆𝐵 → ( ∃ 𝑖𝐼 𝑦 = 𝑆𝑦𝐵 ) )
15 8 14 syl5bi ( ∀ 𝑖𝐼 𝑆𝐵 → ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } → 𝑦𝐵 ) )
16 15 ssrdv ( ∀ 𝑖𝐼 𝑆𝐵 → { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ⊆ 𝐵 )
17 1 2 3 4 glbconN ( ( 𝐾 ∈ HL ∧ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ⊆ 𝐵 ) → ( 𝐺 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ) = ( ‘ ( 𝑈 ‘ { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } ) ) )
18 16 17 sylan2 ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐺 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ) = ( ‘ ( 𝑈 ‘ { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } ) ) )
19 fvex ( 𝑦 ) ∈ V
20 eqeq1 ( 𝑥 = ( 𝑦 ) → ( 𝑥 = 𝑆 ↔ ( 𝑦 ) = 𝑆 ) )
21 20 rexbidv ( 𝑥 = ( 𝑦 ) → ( ∃ 𝑖𝐼 𝑥 = 𝑆 ↔ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) )
22 19 21 elab ( ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ↔ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 )
23 22 rabbii { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } = { 𝑦𝐵 ∣ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 }
24 df-rab { 𝑦𝐵 ∣ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) }
25 23 24 eqtri { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) }
26 nfv 𝑖 𝐾 ∈ HL
27 26 9 nfan 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 )
28 rspa ( ( ∀ 𝑖𝐼 𝑆𝐵𝑖𝐼 ) → 𝑆𝐵 )
29 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
30 1 4 opoccl ( ( 𝐾 ∈ OP ∧ 𝑆𝐵 ) → ( 𝑆 ) ∈ 𝐵 )
31 29 30 sylan ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑆 ) ∈ 𝐵 )
32 eleq1a ( ( 𝑆 ) ∈ 𝐵 → ( 𝑦 = ( 𝑆 ) → 𝑦𝐵 ) )
33 31 32 syl ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑦 = ( 𝑆 ) → 𝑦𝐵 ) )
34 33 pm4.71rd ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑦 = ( 𝑆 ) ↔ ( 𝑦𝐵𝑦 = ( 𝑆 ) ) ) )
35 1 4 opcon2b ( ( 𝐾 ∈ OP ∧ 𝑆𝐵𝑦𝐵 ) → ( 𝑆 = ( 𝑦 ) ↔ 𝑦 = ( 𝑆 ) ) )
36 29 35 syl3an1 ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑦𝐵 ) → ( 𝑆 = ( 𝑦 ) ↔ 𝑦 = ( 𝑆 ) ) )
37 36 3expa ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑦𝐵 ) → ( 𝑆 = ( 𝑦 ) ↔ 𝑦 = ( 𝑆 ) ) )
38 eqcom ( 𝑆 = ( 𝑦 ) ↔ ( 𝑦 ) = 𝑆 )
39 37 38 bitr3di ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑦𝐵 ) → ( 𝑦 = ( 𝑆 ) ↔ ( 𝑦 ) = 𝑆 ) )
40 39 pm5.32da ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( ( 𝑦𝐵𝑦 = ( 𝑆 ) ) ↔ ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ) )
41 34 40 bitrd ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑦 = ( 𝑆 ) ↔ ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ) )
42 28 41 sylan2 ( ( 𝐾 ∈ HL ∧ ( ∀ 𝑖𝐼 𝑆𝐵𝑖𝐼 ) ) → ( 𝑦 = ( 𝑆 ) ↔ ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ) )
43 42 anassrs ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) ∧ 𝑖𝐼 ) → ( 𝑦 = ( 𝑆 ) ↔ ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ) )
44 27 43 rexbida ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( ∃ 𝑖𝐼 𝑦 = ( 𝑆 ) ↔ ∃ 𝑖𝐼 ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ) )
45 r19.42v ( ∃ 𝑖𝐼 ( 𝑦𝐵 ∧ ( 𝑦 ) = 𝑆 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) )
46 44 45 bitr2di ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) ↔ ∃ 𝑖𝐼 𝑦 = ( 𝑆 ) ) )
47 46 abbidv ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) } = { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = ( 𝑆 ) } )
48 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑆 ) ↔ 𝑥 = ( 𝑆 ) ) )
49 48 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝐼 𝑦 = ( 𝑆 ) ↔ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) ) )
50 49 cbvabv { 𝑦 ∣ ∃ 𝑖𝐼 𝑦 = ( 𝑆 ) } = { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) }
51 47 50 eqtrdi ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑖𝐼 ( 𝑦 ) = 𝑆 ) } = { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } )
52 25 51 syl5eq ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } = { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } )
53 52 fveq2d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝑈 ‘ { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } ) = ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } ) )
54 53 fveq2d ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( ‘ ( 𝑈 ‘ { 𝑦𝐵 ∣ ( 𝑦 ) ∈ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } } ) ) = ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } ) ) )
55 18 54 eqtrd ( ( 𝐾 ∈ HL ∧ ∀ 𝑖𝐼 𝑆𝐵 ) → ( 𝐺 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = 𝑆 } ) = ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑖𝐼 𝑥 = ( 𝑆 ) } ) ) )